Slide 1

Slide 1 text

Ronojoy Adhikari Research 2009 - 2016 Research Areas Soft Matter Active Matter Binary Fluids Complex Colloids Nematic Liquid Crystals Membranes Statistical Physics Discrete Kinetic Theory Protein Dynamics Numerics / Computation Lattice Boltzmann Methods Isotropic Finite Di↵erence Stochastic Integrators Discrete Di↵erential Forms Stochastic Processes Enzyme Kinetics Epidemics Machine Learning Markov Models Point Processes Fast Inference 1 2 3 4 5

Slide 2

Slide 2 text

PRE ’11 Phil.Trans.Roy.Soc ’11 J.Stat.Mech ’11 PRL ’11 PRL ’10, PRL ’12 Nature Sci. Rep. ’13 PRL ’14, Soft Matter ’15, Current Science ’10 PNAS ’12 PRE ’10 Science ’09, PNAS ’09 PRE ’11, Langmuir ’13 Soft Matter ’16 PRE ’09, JCP ’09 JCP ’10 PRX (under review) EPL ’13 J.Comp.Phys ’13 Journals PRE ’10 JASA ’10, SMAC ’14 J.Stat.Mech ’11 High impact journals PRL ’16 Ronojoy Adhikari Research 2009 - 2016 Research Areas Soft Matter Active Matter Binary Fluids Complex Colloids Nematic Liquid Crystals Membranes Statistical Physics Discrete Kinetic Theory Protein Dynamics Numerics / Computation Lattice Boltzmann Methods Isotropic Finite Di↵erence Stochastic Integrators Discrete Di↵erential Forms Stochastic Processes Enzyme Kinetics Epidemics Machine Learning Markov Models Point Processes Fast Inference 1 2 3 4 5

Slide 3

Slide 3 text

PRE ’11 Phil.Trans.Roy.Soc ’11 J.Stat.Mech ’11 PRL ’11 PRL ’10, PRL ’12 Nature Sci. Rep. ’13 PRL ’14, Soft Matter ’15, Current Science ’10 PNAS ’12 PRE ’10 Science ’09, PNAS ’09 PRE ’11, Langmuir ’13 Soft Matter ’16 PRE ’09, JCP ’09 JCP ’10 PRX (under review) EPL ’13 J.Comp.Phys ’13 Journals PRE ’10 JASA ’10, SMAC ’14 J.Stat.Mech ’11 High impact journals PRL ’16 Indo-US Fellowship Princeton / NYU ’13 DAE-SRC Award ’15 US patent pending ’16 SankhyaSutra Labs (startup @ JNCASR ’15) Hamied Visiting Lecturer Cambridge University ’12 Awards, fellowships, others Google Faculty Research Award ’10 Ronojoy Adhikari Research 2009 - 2016 Research Areas Soft Matter Active Matter Binary Fluids Complex Colloids Nematic Liquid Crystals Membranes Statistical Physics Discrete Kinetic Theory Protein Dynamics Numerics / Computation Lattice Boltzmann Methods Isotropic Finite Di↵erence Stochastic Integrators Discrete Di↵erential Forms Stochastic Processes Enzyme Kinetics Epidemics Machine Learning Markov Models Point Processes Fast Inference 1 2 3 4 5

Slide 4

Slide 4 text

PRE ’11 Phil.Trans.Roy.Soc ’11 J.Stat.Mech ’11 PRL ’11 PRL ’10, PRL ’12 Nature Sci. Rep. ’13 PRL ’14, Soft Matter ’15, Current Science ’10 PNAS ’12 PRE ’10 Science ’09, PNAS ’09 PRE ’11, Langmuir ’13 Soft Matter ’16 PRE ’09, JCP ’09 JCP ’10 PRX (under review) EPL ’13 J.Comp.Phys ’13 Journals PRE ’10 JASA ’10, SMAC ’14 J.Stat.Mech ’11 High impact journals PRL ’16 Doctoral Students A. Bhattacharjee (’10) - Inspire faculty @IISc S. Thampi (’12) - Asst. Prof @IIT-M S. Ghose (’14) - Science journalist A. Pandey (’16) - Post-doc (Tokyo) A. Laskar (’16) - submitted R. Singh - current R. Manna - current Indo-US Fellowship Princeton / NYU ’13 DAE-SRC Award ’15 US patent pending ’16 SankhyaSutra Labs (startup @ JNCASR ’15) Hamied Visiting Lecturer Cambridge University ’12 Awards, fellowships, others Google Faculty Research Award ’10 Ronojoy Adhikari Research 2009 - 2016 Research Areas Soft Matter Active Matter Binary Fluids Complex Colloids Nematic Liquid Crystals Membranes Statistical Physics Discrete Kinetic Theory Protein Dynamics Numerics / Computation Lattice Boltzmann Methods Isotropic Finite Di↵erence Stochastic Integrators Discrete Di↵erential Forms Stochastic Processes Enzyme Kinetics Epidemics Machine Learning Markov Models Point Processes Fast Inference 1 2 3 4 5

Slide 5

Slide 5 text

Two-dimensional crystallization of active colloids with Rajesh Singh

Slide 6

Slide 6 text

Two-dimensional crystallization of active colloids with Rajesh Singh Recent experiments have observed an intriguing symmetry-breaking transition in active colloids. Bacteria: Libchaber et al PRL 2015 Autophoretic colloids : Palacci et al Science 2013

Slide 7

Slide 7 text

Two-dimensional crystallization of active colloids with Rajesh Singh Recent experiments have observed an intriguing symmetry-breaking transition in active colloids. Bacteria: Libchaber et al PRL 2015 Autophoretic colloids : Palacci et al Science 2013

Slide 8

Slide 8 text

Two-dimensional crystallization of active colloids with Rajesh Singh Recent experiments have observed an intriguing symmetry-breaking transition in active colloids. Bacteria: Libchaber et al PRL 2015 Autophoretic colloids : Palacci et al Science 2013

Slide 9

Slide 9 text

Our theory - identified the mechanism underlying this crystallization phenomenon: active hydrodynamic flow near a wall induces effective attractive interactions between active colloids. Thereby, constructed over-damped equations of motion for particle configurations. Complete description at micron scales. Two-dimensional crystallization of active colloids with Rajesh Singh Recent experiments have observed an intriguing symmetry-breaking transition in active colloids. Bacteria: Libchaber et al PRL 2015 Autophoretic colloids : Palacci et al Science 2013

Slide 10

Slide 10 text

Our theory - identified the mechanism underlying this crystallization phenomenon: active hydrodynamic flow near a wall induces effective attractive interactions between active colloids. Thereby, constructed over-damped equations of motion for particle configurations. Complete description at micron scales. Two-dimensional crystallization of active colloids with Rajesh Singh Recent experiments have observed an intriguing symmetry-breaking transition in active colloids. Bacteria: Libchaber et al PRL 2015 Autophoretic colloids : Palacci et al Science 2013

Slide 11

Slide 11 text

Our theory - identified the mechanism underlying this crystallization phenomenon: active hydrodynamic flow near a wall induces effective attractive interactions between active colloids. Thereby, constructed over-damped equations of motion for particle configurations. Complete description at micron scales. Two-dimensional crystallization of active colloids with Rajesh Singh Recent experiments have observed an intriguing symmetry-breaking transition in active colloids. Bacteria: Libchaber et al PRL 2015 Autophoretic colloids : Palacci et al Science 2013 Phonon modes are non-propagating, dispersion relation is activity- dependent. Active stiffening suppresses phase fluctuations and algebraic decay of order. Possibility of “active” topological defect-mediated melting. This is a new mechanism of spontaneous symmetry breaking, with no analogue in equilibrium. Entropy production, rather than entropy, is the source of effective interactions. Continuum description of these phenomena, by a non-equilibrium extension of the density wave theory of two-dimensional freezing (Ramakrishnan 1982), is ongoing work.