Slide 1

Slide 1 text

Dr Jonathan Skelton Department of Chemistry, University of Manchester ([email protected]) Predicting and understanding phase stability using lattice-dynamics modelling

Slide 2

Slide 2 text

Lattice dynamics VASP Workshop, 6th Feb 2023 | Slide 2 Dr Jonathan Skelton Consider the Taylor expansion of the crystal potential energy: The second-order force constants 𝚽!,!! can be used to derive the phonon modes within the harmonic approximation πœ‘ 𝒖 = Ξ¦# + ' ! ' $ Ξ¦! $𝑒! $ + 1 2 ' !,!! ' $,% Ξ¦ !,!! $% 𝑒! $𝑒 !! % + 1 3! ' !,!!,!!! ' $,%,& Ξ¦ !,!!,!!! $%& 𝑒! $𝑒 !! % 𝑒 !!! & + β‹― Third- and higher-order force constants e.g. 𝚽!,!!,!!! capture various forms of anharmonicity and can be used to build on the basic HA e.g. for a perturbative treatment of phonon lifetimes Lattice energy π‘ˆ'()) Atomic forces (vanish at equilibrium) Harmonic approx. Anharmonicity

Slide 3

Slide 3 text

Phonons in solids VASP Workshop, 6th Feb 2023 | Slide 3 Dr Jonathan Skelton

Slide 4

Slide 4 text

Phonons in solids VASP Workshop, 6th Feb 2023 | Slide 4 Dr Jonathan Skelton

Slide 5

Slide 5 text

Phonons and phase stability VASP Workshop, 6th Feb 2023 | Slide 5 Dr Jonathan Skelton Geometry Optimisation Energy/Volume EoS 𝐸(𝑉) Athermal Energy 𝐸" Helmholtz Energy 𝐴(𝑇) Helmholtz Energy 𝐴(𝑉, 𝑇) Gibbs Energy 𝐺(𝑇, 𝑝) Dynamical Stability Phonons

Slide 6

Slide 6 text

Example: the tin sulphides Rocksalt Pnma Cmcm πœ‹-cubic SnS2 Sn2 S3 Zincblende VASP Workshop, 6th Feb 2023 | Slide 6 Dr Jonathan Skelton

Slide 7

Slide 7 text

Energetics I: convex hull J. M. Skelton et al., J. Phys. Chem. C 121 (12), 6446 (2017) VASP Workshop, 6th Feb 2023 | Slide 7 Dr Jonathan Skelton

Slide 8

Slide 8 text

Thermodynamics I Using the harmonic approximation, we can calculate the Helmholtz free energy 𝐴(𝑇): 𝐴 𝑇 = π‘ˆ'()) + 𝐴*+, 𝑇 = π‘ˆ'()) + π‘ˆ*+,(𝑇) βˆ’ 𝑇𝑆*+,(𝑇) The 𝐴*+, 𝑇 term is calculated using the bridge relation from the partition function 𝑍*+, 𝑇 : 𝑍*+, 𝑇 = 6 πͺ. exp[βˆ’ ⁄ β„πœ”πͺ. 2π‘˜/𝑇] 1 βˆ’ exp[βˆ’ ⁄ β„πœ”πͺ. π‘˜/𝑇] 𝐴*+, 𝑇 = βˆ’ 1 𝑁 π‘˜/ 𝑇ln 𝑍*+, 𝑇 = 1 𝑁 1 2 ' πͺ. β„πœ”πͺ. + π‘˜/ 𝑇 ' πͺ. ln 1 βˆ’ exp βˆ’ ⁄ β„πœ”πͺ. π‘˜/ 𝑇 In typical DFT calculations the π‘ˆ'()) is temperature independent - the phonon frequencies allows the temperature-dependent Helmholtz energy to be calculated VASP Workshop, 6th Feb 2023 | Slide 8 Dr Jonathan Skelton

Slide 9

Slide 9 text

Energetics II: Helmholtz energy J. M. Skelton et al., J. Phys. Chem. C 121 (12), 6446 (2017) VASP Workshop, 6th Feb 2023 | Slide 9 Dr Jonathan Skelton

Slide 10

Slide 10 text

Thermodynamics II Using the harmonic approximation, we can calculate the Helmholtz free energy 𝐴(𝑇): 𝐴(𝑇) = π‘ˆ'()) + π‘ˆ*+,(𝑇) βˆ’ 𝑇𝑆*+,(𝑇) If we also take into account the volume dependence of π‘ˆ'()) and the phonon frequencies, we can calculate the Gibbs free energy 𝐺(𝑇) (the quasi-harmonic approximation): 𝐺 𝑇 = min 0 𝐴 𝑇; 𝑉 + 𝑝𝑉 = min 0 π‘ˆ'()) (𝑉) + π‘ˆ*+, (𝑇; 𝑉) βˆ’ 𝑇𝑆*+, (𝑇; 𝑉) + 𝑝𝑉 This is typically achieved by minimising a free-energy equation of state, which yields other properties such as 𝑉(𝑇) and 𝐡(𝑇) alongside 𝐺(𝑇) (𝐺 is arguably a more experimentally-relevant quantity, and we can also explore the effect of pressure through the 𝑝𝑉 term.) VASP Workshop, 6th Feb 2023 | Slide 10 Dr Jonathan Skelton

Slide 11

Slide 11 text

Energetics III: Gibbs vs Helmholtz I. Pallikara and J. M. Skelton, Phys. Chem. Chem. Phys. 23, 19219 (2021) VASP Workshop, 6th Feb 2023 | Slide 11 Dr Jonathan Skelton

Slide 12

Slide 12 text

Imaginary modes I: Cmcm SnSe J. M. Skelton et al., Phys. Rev. Lett 117, 075502 (2016) VASP Workshop, 6th Feb 2023 | Slide 12 Dr Jonathan Skelton

Slide 13

Slide 13 text

Dynamical stability U(Q) Q Real PES HA U(Q) Q Real PES HA π‘ˆ 𝑄 = 1 2 πœ‡πœ”1𝑄1 VASP Workshop, 6th Feb 2023 | Slide 13 Dr Jonathan Skelton

Slide 14

Slide 14 text

Imaginary mode PES mapping J. M. Skelton et al., Phys. Rev. Lett 117, 075502 (2016) VASP Workshop, 6th Feb 2023 | Slide 14 Dr Jonathan Skelton

Slide 15

Slide 15 text

Imaginary modes I: Cmcm SnSe VASP Workshop, 6th Feb 2023 | Slide 15 Dr Jonathan Skelton Low 𝑇: Pnma High 𝑇: Cmcm (Average structure) I. Pallikara and J. M. Skelton, Phys. Chem. Chem. Phys. 23, 19219 (2021)

Slide 16

Slide 16 text

Pressure and dynamical stability I. Pallikara and J. M. Skelton, Phys. Chem. Chem. Phys. 23, 19219 (2021) VASP Workshop, 6th Feb 2023 | Slide 16 Dr Jonathan Skelton

Slide 17

Slide 17 text

Energetics IV: p/T phase diagram I. Pallikara and J. M. Skelton, Phys. Chem. Chem. Phys. 23, 19219 (2021) VASP Workshop, 6th Feb 2023 | Slide 17 Dr Jonathan Skelton

Slide 18

Slide 18 text

Hybrid perovskites: (CH3 NH3 )PbI3 Orthorhombic (𝑇 < 165 K) Tetragonal (𝑇 =165-327 K) Cubic (𝑇 > 327 K) VASP Workshop, 6th Feb 2023 | Slide 18 Dr Jonathan Skelton A. N. Beecher et al., ACS Energy Lett. 1 (4), 880 (2016)

Slide 19

Slide 19 text

Imaginary modes II: MAPbI3 c-MAPbI3 VASP Workshop, 6th Feb 2023 | Slide 19 Dr Jonathan Skelton L. D. Whalley et al., Phys. Rev. B 94, 220301(R) (2016)

Slide 20

Slide 20 text

VASP Workshop, 6th Feb 2023 | Slide 20 Dr Jonathan Skelton Imaginary modes II: MAPbI3 A. N. Beecher et al., ACS Energy Lett. 1 (4), 880 (2016)

Slide 21

Slide 21 text

VASP Workshop, 6th Feb 2023 | Slide 21 Dr Jonathan Skelton Imaginary modes II: MAPbI3 A. N. Beecher et al., ACS Energy Lett. 1 (4), 880 (2016)

Slide 22

Slide 22 text

VASP Workshop, 6th Feb 2023 | Slide 22 Dr Jonathan Skelton Imaginary modes III: Bi2 Sn2 O7 W. Rahim et al., Chem. Sci. 11, 7904 (2020)

Slide 23

Slide 23 text

VASP Workshop, 6th Feb 2023 | Slide 23 Dr Jonathan Skelton Imaginary modes III: Bi2 Sn2 O7 W. Rahim et al., Chem. Sci. 11, 7904 (2020)

Slide 24

Slide 24 text

Phonon spectroscopy VASP Workshop, 6th Feb 2023 | Slide 24 Dr Jonathan Skelton B. Wei et al., Molecules 27 (19), 6431 (2022)

Slide 25

Slide 25 text

Phonon spectroscopy VASP Workshop, 6th Feb 2023 | Slide 25 Dr Jonathan Skelton B. Wei et al., Molecules 27 (19), 6431 (2022)

Slide 26

Slide 26 text

Phonon spectroscopy VASP Workshop, 6th Feb 2023 | Slide 26 Dr Jonathan Skelton 𝒗 [cm-1] Ir. Rep. 𝑰!" 𝑰"#$#% Ξ“ [cm-1] 𝒗 [cm-1] Ir. Rep. 𝑰!" 𝑰"#$#% Ξ“ [cm-1] 0.00 B2u - - - 397.53 Ag 0.000 1.702 0.61 0.00 B1u - - - 407.82 B2u 0.029 0.000 1.20 0.00 B3u - - - 415.81 B1u 0.000 0.000 1.57 54.73 B1u 0.000 0.000 0.08 421.80 B3g 0.000 0.042 1.12 62.88 Au 0.000 0.000 0.12 426.94 B2u 0.005 0.000 1.56 80.03 Au 0.000 0.000 0.68 440.20 Ag 0.000 2.783 2.22 83.26 B3u 0.002 0.000 0.50 443.30 B2g 0.000 1.001 1.95 109.78 B2g 0.000 0.004 0.44 444.08 B1g 0.000 0.019 2.51 116.62 B1g 0.000 0.015 0.30 454.09 B3g 0.000 0.470 2.97 151.83 Ag 0.000 0.081 0.23 469.23 B3u 0.004 0.000 2.04 155.94 B2u 0.001 0.000 0.52 470.48 Ag 0.000 5.650 3.36 159.48 B3g 0.000 0.178 0.30 475.32 Au 0.000 0.000 2.43 164.25 B2u 0.000 0.000 0.33 479.41 B1g 0.000 1.092 2.40 183.06 B1u 0.007 0.000 0.56 491.32 B2g 0.000 0.925 2.26 244.23 B3g 0.000 0.010 1.40 496.49 B1u 0.008 0.000 1.25 290.37 B1u 0.168 0.000 2.74 504.58 B3g 0.000 0.001 2.73 365.10 Ag 0.000 1.394 1.86 524.36 Ag 0.000 4.379 3.58 386.98 B3g 0.000 0.067 1.19 528.69 B2u 0.002 0.000 1.67 * Intensity units: 𝐼45 - e2 amu-1; 𝐼5(6(7 - 103 Γ…4 amu-1 B. Wei et al., Molecules 27 (19), 6431 (2022)

Slide 27

Slide 27 text

Summary Phonon calculations are a computationally-tractable and powerful means for assessing the phase stability of materials A standard DFT total-energy calculation only provides the β€œathermal” total energy 𝐸# and does not account for the effect of temperature The harmonic approximation provides access to the temperature-dependent Helmholtz free energy 𝐴(𝑇) The quasi-harmonic approximation provides access to the temperature- and pressure-dependent Gibbs free energy 𝐺(𝑇, 𝑝) The presence of imaginary modes in the harmonic spectrum indicate dynamical instabilities and can provide information about the nature of phase transitions and/or a means to explore the structural potential-energy surface Phonons calculations can also be used to simulate the infrared (IR) and Raman spectra, which provide a very good point of comparison to experiments VASP Workshop, 6th Feb 2023 | Slide 27 Dr Jonathan Skelton

Slide 28

Slide 28 text

Software + resources Phonopy - https://phonopy.github.io/phonopy/ Implements the HA and QHA and interfaces very easily with VASP ModeMap - https://github.com/JMSkelton/ModeMap Add-on to Phonopy for mapping imaginary harmonic modes Phonopy-Spectroscopy - https://github.com/JMSkelton/Phonopy-Spectroscopy Add-on to Phonopy for simulating IR and Raman spectra Phonopy β€œPro Tips” - https://www.slideshare.net/jmskelton/phonons-phonopy-pro- tips-2015 Tutorial covering various aspects of Phonopy calculations VASP Workshop, 6th Feb 2023 | Slide 28 Dr Jonathan Skelton

Slide 29

Slide 29 text

Acknowledgements VASP Workshop, 6th Feb 2023 | Slide 29 Dr Jonathan Skelton

Slide 30

Slide 30 text

https://bit.ly/3X0ViT0 These slides are available on Speaker Deck: