Slide 1

Slide 1 text

Just-in-Time with Numba Presented by: Ong Chin Hwee (@ongchinhwee) 25 April 2020 Remote Python Pizza

Slide 2

Slide 2 text

About me Ong Chin Hwee 王敬惠 ● Data Engineer @ ST Engineering ● Background in aerospace engineering + computational modelling ● Contributor to pandas 1.0 release ● Mentor team at BigDataX @ongchinhwee

Slide 3

Slide 3 text

Bottlenecks in a data science project ● Lack of data / Poor quality data ● Data Preprocessing ○ The 80/20 data science dilemma ■ In reality, it’s closer to 90/10 ○ Slow processing speeds in Python! ■ Python runs on the interpreter, not compiled @ongchinhwee

Slide 4

Slide 4 text

Compiled vs Interpreted Languages Written Code Compiler Compiled Code in Target Language Linker Machine Code (executable) Loader Execution @ongchinhwee @ongchinhwee

Slide 5

Slide 5 text

Compiled vs Interpreted Languages Written Code Compiler Lower-level bytecode Virtual Machine Execution @ongchinhwee

Slide 6

Slide 6 text

What is Just-in-Time? Just-In-Time (JIT) compilation ● Converts source code into native machine code at runtime ● Is the reason why Java runs on a Virtual Machine (JVM) yet has comparable performance to compiled languages (C/C++ etc., Go) @ongchinhwee

Slide 7

Slide 7 text

Just-in-Time with Numba numba module ● Just-in-Time (JIT) compiler for Python that converts Python functions into machine code ● Can be used by simply applying a decorator (a wrapper) around functions to instruct numba to compile them ● Two modes of execution: ○ njit (nopython compilation of Numba-compatible code) ○ jit (object mode compilation with “loop-lifting”) @ongchinhwee

Slide 8

Slide 8 text

Numba Compiler Architecture Lower-level bytecode Numba interpreter Numba IR Lowering (codegen) LLVM IR @ongchinhwee Type inference Typed Numba IR Machine Code (executable) LLVM JIT Compiler IR: Intermediate Representation

Slide 9

Slide 9 text

Numba Compiler Architecture Lower-level bytecode Numba interpreter Numba IR Lowering (codegen) LLVM IR @ongchinhwee Type inference Typed Numba IR Machine Code (executable) LLVM JIT Compiler Numba frontend Numba backend IR: Intermediate Representation

Slide 10

Slide 10 text

Practical Implementation @ongchinhwee

Slide 11

Slide 11 text

Initialize File List in Directory import numpy as np import os import sys import time DIR = './chest_xray/train/NORMAL/' train_normal = [DIR + name for name in os.listdir(DIR) if os.path.isfile(os.path.join(DIR, name))] No. of images in ‘train/NORMAL’: 1431 @ongchinhwee

Slide 12

Slide 12 text

With numba from PIL import Image from numba import jit @jit def image_proc(index): '''Convert + resize image''' im = Image.open(define_imagepath(index)) im = im.convert("RGB") im_resized = np.array(im.resize((64,64))) return im_resized @ongchinhwee

Slide 13

Slide 13 text

With numba from PIL import Image from numba import jit @jit def image_proc(index): '''Convert + resize image''' im = Image.open(define_imagepath(index)) im = im.convert("RGB") im_resized = np.array(im.resize((64,64))) return im_resized Code runs in object mode (@jit) @ongchinhwee

Slide 14

Slide 14 text

With numba start_cpu_time = time.clock() listcomp_output = np.array([image_resize(x) for x in train_normal]) end_cpu_time = time.clock() total_tpe_time = end_cpu_time - start_cpu_time sys.stdout.write('List comprehension completed in {} seconds.\n'.format( total_tpe_time)) Python-only: 218.1 seconds After compilation: 169.6 seconds @ongchinhwee

Slide 15

Slide 15 text

With numba import numpy as np from numba import njit @njit def square(a_list): squared_list = [] '''Calculate square of number in a_list''' for x in a_list: squared_list.append(np.square(x)) return squared_list @ongchinhwee

Slide 16

Slide 16 text

With numba import numpy as np from numba import njit @njit def square(a_list): squared_list = [] '''Calculate square of number in a_list''' for x in a_list: squared_list.append(np.square(x)) return squared_list Code runs in no-Python/native machine mode (@njit or @jit(nopython=true)) @ongchinhwee

Slide 17

Slide 17 text

With numba a_list = np.array([i for i in range(1,100000)]) start_cpu_time = time.time() listcomp_array_output = square(a_list) end_cpu_time = time.time() total_tpe_time = end_cpu_time - start_cpu_time sys.stdout.write( 'Elapsed (after compilation) {} seconds.\n'.format(total_tpe_time)) Python-only: 0.51544 seconds After compilation: 0.00585 seconds @ongchinhwee

Slide 18

Slide 18 text

Key Takeaways @ongchinhwee

Slide 19

Slide 19 text

Just-in-Time with numba ● Just-in-Time (JIT) compilation with numba ○ converts source code from non-compiled languages into native machine code at runtime ○ may not work for some functions/modules - these are still run on the interpreter ○ significantly enhances speedups provided by optimized numerical codes @ongchinhwee

Slide 20

Slide 20 text

Reach out to me! : ongchinhwee : @ongchinhwee : hweecat : https://ongchinhwee.me And check out my slides on: hweecat/talk_jit-numba