Slide 23
Slide 23 text
Data Strategy and Operation Center
参考⽂献
• 佐藤⼀誠 「トピックモデルによる統計的潜在意味解析」, コロナ社
• 持橋⼤地, ⼤⽻成征「ガウス過程と機械学習」, 講談社
• David M. Blei, John D. Lafferty (2006). Dynamic topic models. In International Conference on Machine Learning.
• Patrick Jähnichen, Florian Wenzel, Marius Kloft, Stephan Mandt (2018). Scalable Generalized Topic Models. In
International Conference on Artificial Intelligence and Statistics.
• Federico Tomasi, Praveen Chandar, Gal Levy-Fix, Mounia Lalmas-Roelleke, Zhenwen Dai (2020). Stochastic Variational
Inference for Dynamic Correlated Topic Models. In Uncertainty in Artificial Intelligence.
• Adji B. Dieng, Francisco J. R. Ruiz, David M. Blei (2019). The Dynamic Embedded Topic Models.
• Lau, J. H., Newman, D., and Baldwin, T. (2014). Machine reading tea leaves: Automatically evaluating topic coherence
and topic model quality. In Conference of the European Chapter of the Association for Computational Linguistics.
• Adji B. Dieng, Francisco J. R. Ruiz and David M. Blei. (2020) Topic Modeling in Embedding Spaces. In Transactions of
the Association for Computational Linguistics.
• Hanna M. Wallach, David M. Mimno, Andrew McCallum. (2009) Rethinking LDA: Why Priors Matter. In Neural Information
Processing Systems.