Slide 57
Slide 57 text
参考⽂献 LLMマルチエージェント
• 協調効果 Zhang, Hongxin, et al. "Building cooperative embodied agents modularly with large language models." arXiv preprint
arXiv:2307.02485 (2023).
• 協調効果 Zhang, Jintian, Xin Xu, and Shumin Deng. "Exploring collaboration mechanisms for llm agents: A social psychology
view." arXiv preprint arXiv:2310.02124 (2023).
• 協調効果 Sun, Qiushi, et al. "Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration." arXiv
preprint arXiv:2310.00280 (2023).
• 対話精度向上 Du, Yilun, et al. "Improving Factuality and Reasoning in Language Models through Multiagent Debate." arXiv
preprint arXiv:2305.14325 (2023).
• 対話精度向上 Smit, Andries, et al. "Are we going MAD? Benchmarking Multi-Agent Debate between Language Models for
Medical Q&A." arXiv preprint arXiv:2311.17371 (2023).
• 対話精度向上 Chen, Justin Chih-Yao, Swarnadeep Saha, and Mohit Bansal. "Reconcile: Round-table conference improves
reasoning via consensus among diverse llms." arXiv preprint arXiv:2309.13007 (2023).
• 対話精度向上 Wang, Qineng, et al. "On the Discussion of Large Language Models: Symmetry of Agents and Interplay with
Prompts." arXiv preprint arXiv:2311.07076 (2023).
• LLM multi-agentsサーベイ Xi, Zhiheng, et al. "The rise and potential of large language model based agents: A survey." arXiv
preprint arXiv:2309.07864 (2023).
• LLM multi-agentsサーベイ Talebirad, Yashar, and Amirhossein Nadiri. "Multi-Agent Collaboration: Harnessing the Power of
Intelligent LLM Agents." arXiv preprint arXiv:2306.03314 (2023).
57