Slide 1
Slide 1 text
Copyright 2022 Maxwell_110
Validation strategy
- Sequence-based 4 fold CV
- The number of CoTS is close in each fold
- Training data is frames with CoTs
- Validation data includes frames w/o CoTs
Resize up to 2.75 times
using progressive learning
1280
720
Augmentation
Increasing probability of applying
augmentation as progressive
learning progresses.
- Default YOLO-X augmentations
- random resize: (-5, 5)
- mosaic / MixUp / hsv / flip:
p = 0.6 -> 0.8
- degrees: Not used
- translate: 0.1
- mosaic / MixUp scale: (0.5, 1.5)
- RandomGamma
- RGBShift
- Sharpen
- GaussNoise
Batch Size: 4
GeForce RTX 3080 (x 2)
Solution description in Kaggle discussion
https://www.kaggle.com/c/tensorflow-great-barrier-reef/discussion/307691
Learning strategy
- Progressive learning
- Optimizer: default SGD
(decay: 5e-4, momentum: 0.9)
- LR: .000625
- Scheduler: yoloxwarmcos
- min_lr_ratio: 0.1
- EMA: on
- warmup_epochs: 5
- max_epoch: 30
TTA Seq-NMS
https://arxiv.org/abs/1602.08465
https://github.com/tmoopenn/seq-nms
n_frames: 2
confidence threshold: 0.07
linkage threshold: 0.1
nms th: 0.4
Weighted Box Fusion
skip box threshold: 0.05
wbf IoU threshold: 0.45
Final confidence threshold: .08
Public LB : 0.607
Private LB : 0.714