Slide 78
Slide 78 text
40
Maximum independent set
Given the set of indices I, let SI
denote the maximum independent
set computed on the matrix A(I).
One partition-oblivious heuristic to compute v:
1. let I = {0, . . . , m + n − 1}, then v := (SI
, I \ SI
)
For partition-aware heuristics, let U be the set of uncut indices, C be
the set of cut indices; we have three possibilities:
1. we compute SU
and have v := (SU
, U \ SU
, C);
2. we compute SU
, SC
and have v := (SU
, U \ SU
, SC
, C \ SC
);
3. we compute SU
, then we define U := U \ SU
and compute
SC∪U
, having v := (SU
, SC∪U
, (C ∪ U ) \ SC∪U
).