Slide 1

Slide 1 text

1 US Election 2020 Web Monitor us2020.weblyzard.com Arno Scharl, Alexander Hubmann-Haidvogel webLyzard technology ▪ Modul University Vienna www.weblyzard.com/us-election-2020-web-monitor

Slide 2

Slide 2 text

2

Slide 3

Slide 3 text

3 Sentiment Share of Voice Brand Reputation Measuring Social Perceptions Success Metrics WYSDOM Success Metric Wheel of Emotions

Slide 4

Slide 4 text

4 2004 Scharl, A. and Weichselbraun, A. (2008). “An Automated Approach to Investigating the Online Media Coverage of US Presidential Elections”, Journal of Information Technology & Politics, 5(1): 121-132.

Slide 5

Slide 5 text

5 2008

Slide 6

Slide 6 text

6

Slide 7

Slide 7 text

7

Slide 8

Slide 8 text

8

Slide 9

Slide 9 text

9

Slide 10

Slide 10 text

10

Slide 11

Slide 11 text

11

Slide 12

Slide 12 text

12

Slide 13

Slide 13 text

13 Elasticsearch | Integration History - Started with PostgreSQL/Tsearch2 - Switched to Apache Lucene in 2009 - Adopted Elasticsearch early 2014 Current Cluster - 5 (soon 7) physical machines – XEON E5, 40 cores, 256GB RAM - 3 x 2TB M.2 NVMe Samsung 960 Pro in striped LVM - Multiple Elasticsearch nodes per machine 4 data nodes, separate master nodes, one coordinating-only node per machine - Docker containers, overlay network, discovery using DNS

Slide 14

Slide 14 text

14 Elasticsearch | Integration Indexing – Custom component based on Vert.x – Data read from CockroachDB (PostgreSQL for legacy data) – Indexer applies transformations/de-normalizations – Enriched with additional metadata e.g., translations, named entities, geographic coordinates – One index per source, language and month e.g., English-language news media: en.4.media.2021-01 – Balance between index/shard size and number of indexes affected by queries and aggregations

Slide 15

Slide 15 text

15 Elasticsearch | Visualization Example 1: Geographic Map – Hashgrid aggregation for extracted locations – User-selectable precision – Aggregate average document sentiment Example 2: Word Tree – Inner hits on search query – Filtered for sentences matching the query – Maintaining document-level sorting

Slide 16

Slide 16 text

16 Elasticsearch | Visualization Example 3: Story Clustering – Aggregate top keywords per interval in date histogram – Sub-aggregation of top associations for each keyword – Converted to graph (connect keywords in subsequent timespans) – Community detection using Louvain algorithm – Date histogram aggregation for each story to obtain document count over time

Slide 17

Slide 17 text

17 Sentiment Share of Voice Brand Reputation Measuring Social Perceptions Success Metrics WYSDOM Success Metric Wheel of Emotions Weichselbraun, A., Steixner, J., Braşovean, A., Scharl, A., Göbel, M. and Nixon, L. (2021). “Automatic Expansion of Domain-Specific Affective Models for Web Intelligence Applications”, Cognitive Computation: Forthcoming. Weichselbraun, A., Gindl, S., Fischer, F., Vakulenko, S. and Scharl, A. (2017). “Aspect-Based Extraction and Analysis of Affective Knowledge from Social Media Streams”, IEEE Intelligent Systems, 32(3): 80-88.

Slide 18

Slide 18 text

18 Sentiment Share of Voice Brand Reputation WYSDOM Success Metric Wheel of Emotions Measuring Social Perceptions Success Metrics

Slide 19

Slide 19 text

19 Innovation R&D Funding – Selected Research Projects

Slide 20

Slide 20 text

20 Newsletter www.weblyzard.com/newsletter Technology Showcases www.weblyzard.com/showcases E-Mail [email protected] @ SlideShare slideshare.com/weblyzard SpeakerDeck speakerdeck.com/weblyzard YouTube youtube.com/+weblyzard Twitter @weblyzard Facebook facebook.com/weblyzard LinkedIn www.linkedin.com/company/ weblyzard-technology