Slide 1

Slide 1 text

No content

Slide 2

Slide 2 text

The Efficiency Paradox and How to Save Yourself and the World Holly Cummins GOTO Copenhagen

Slide 3

Slide 3 text

@holly_cummins #RedHat now senior principal software engineer helping to build Quarkus

Slide 4

Slide 4 text

@holly_cummins #RedHat now senior principal software engineer helping to build Quarkus 2007 let’s make garbage collection more efficient!

Slide 5

Slide 5 text

@holly_cummins #RedHat now senior principal software engineer helping to build Quarkus 2007 let’s make garbage collection more efficient! 2015 lean and xp makes your team more efficient!

Slide 6

Slide 6 text

@holly_cummins #RedHat now senior principal software engineer helping to build Quarkus 2007 let’s make garbage collection more efficient! 2015 lean and xp makes your team more efficient! 2022 quarkus is wonderfully efficient!

Slide 7

Slide 7 text

@holly_cummins #RedHat “this provisioning software is broken”

Slide 8

Slide 8 text

@holly_cummins #RedHat what we sold “this provisioning software is broken” 10 minute provision-time

Slide 9

Slide 9 text

@holly_cummins #RedHat what we sold “this provisioning software is broken” 10 minute provision-time 3 month provision- time what the client thought they’d got

Slide 10

Slide 10 text

@holly_cummins #RedHat what we sold “this provisioning software is broken” 10 minute provision-time 3 month provision- time what the client thought they’d got the reason 84-step pre-approval process

Slide 11

Slide 11 text

@holly_cummins #RedHat waste

Slide 12

Slide 12 text

@holly_cummins #RedHat waste is killing the planet

Slide 13

Slide 13 text

@holly_cummins #RedHat machine 1700s

Slide 14

Slide 14 text

@holly_cummins #RedHat machine 1700s energy

Slide 15

Slide 15 text

@holly_cummins #RedHat machine 1700s energy energy

Slide 16

Slide 16 text

@holly_cummins #RedHat machine 1700s energy energy useful

Slide 17

Slide 17 text

@holly_cummins #RedHat processes 1890s

Slide 18

Slide 18 text

@holly_cummins #RedHat processes time money 1890s

Slide 19

Slide 19 text

@holly_cummins #RedHat processes time money 1890s value

Slide 20

Slide 20 text

@holly_cummins #RedHat processes time money 1890s value

Slide 21

Slide 21 text

@holly_cummins #RedHat manufacturing 1900s

Slide 22

Slide 22 text

@holly_cummins #RedHat manufacturing 1900s value value

Slide 23

Slide 23 text

@holly_cummins #RedHat manufacturing 1900s value value value

Slide 24

Slide 24 text

@holly_cummins #RedHat software 1960s

Slide 25

Slide 25 text

@holly_cummins #RedHat software time electricity hardware 1960s

Slide 26

Slide 26 text

@holly_cummins #RedHat software time electricity hardware answers 1960s

Slide 27

Slide 27 text

@holly_cummins #RedHat machine energy energy useful

Slide 28

Slide 28 text

@holly_cummins #RedHat waste machine energy energy useful

Slide 29

Slide 29 text

@holly_cummins #RedHat waste is killing the planet

Slide 30

Slide 30 text

@holly_cummins #RedHat e-waste is killing the planet

Slide 31

Slide 31 text

@holly_cummins #RedHat energy waste is killing the planet

Slide 32

Slide 32 text

@holly_cummins #RedHat slow code is killing the planet

Slide 33

Slide 33 text

@holly_cummins #RedHat https://blog.linkedin.com/2017/august/3/making-linkedin-more-accessible-via-linkedin-lite

Slide 34

Slide 34 text

@holly_cummins #RedHat https://blog.linkedin.com/2017/august/3/making-linkedin-more-accessible-via-linkedin-lite “my heart sank … our new feature failed to load because of poor internet connectivity”

Slide 35

Slide 35 text

@holly_cummins #RedHat https://blog.linkedin.com/2017/august/3/making-linkedin-more-accessible-via-linkedin-lite modern web is so inefficient it is useless for part of its audience “my heart sank … our new feature failed to load because of poor internet connectivity”

Slide 36

Slide 36 text

@holly_cummins #RedHat forgotten code is killing the planet

Slide 37

Slide 37 text

#RedHat @[email protected] 25% of 16,000 servers doing no useful work https://www.anthesisgroup.com/wp-content/uploads/2019/11/Comatose-Servers-Redux-2017.pdf zombie servers

Slide 38

Slide 38 text

#RedHat @[email protected] the average server: 12 - 18% of capacity https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IB.pdf

Slide 39

Slide 39 text

@holly_cummins #RedHat unused data is killing the planet

Slide 40

Slide 40 text

#RedHat @[email protected] 68% of data is stored and never used https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IB.pdf https://www.seagate.com/gb/en/news/news-archive/seagates-rethink-data-report-reveals-that-68-percent-of-data-available-to-businesses-goes-unleveraged-pr-master/

Slide 41

Slide 41 text

@holly_cummins #RedHat it’s not just money

Slide 42

Slide 42 text

@holly_cummins #RedHat it’s not just electricity it’s not just money

Slide 43

Slide 43 text

@holly_cummins #RedHat it’s not just electricity it’s water it’s not just money

Slide 44

Slide 44 text

@holly_cummins #RedHat it’s not just electricity it’s water it’s e-waste it’s not just money

Slide 45

Slide 45 text

@holly_cummins #RedHat it’s not just electricity it’s water it’s e-waste it’s not just money it’s embodied carbon

Slide 46

Slide 46 text

@holly_cummins #RedHat we have solutions good news, everyone

Slide 47

Slide 47 text

@holly_cummins #RedHat making turning servers off as safe and easy as turning lights off. and then automate it.

Slide 48

Slide 48 text

@holly_cummins #RedHat solution: LightSwitchOps making turning servers off as safe and easy as turning lights off. and then automate it.

Slide 49

Slide 49 text

@holly_cummins #RedHat absurdly simple scripts my shell script to power down machines overnight saved my school €12,000

Slide 50

Slide 50 text

@holly_cummins #RedHat simple automation we used to leave our applications running all the time @darkandnerdy, Chicago DevOpsDays

Slide 51

Slide 51 text

@holly_cummins #RedHat simple automation we used to leave our applications running all the time when we scripted turning them off at night, we reduced our cloud bill by 30% @darkandnerdy, Chicago DevOpsDays

Slide 52

Slide 52 text

@holly_cummins #RedHat fancier scripts … with a frontend and a backend

Slide 53

Slide 53 text

@holly_cummins #RedHat

Slide 54

Slide 54 text

@holly_cummins #RedHat saves energy

Slide 55

Slide 55 text

@holly_cummins #RedHat saves energy saves money

Slide 56

Slide 56 text

@holly_cummins #RedHat saves energy saves money bonus: tests disaster recovery

Slide 57

Slide 57 text

@holly_cummins #RedHat saves energy saves money bonus: tests disaster recovery

Slide 58

Slide 58 text

@holly_cummins #RedHat

Slide 59

Slide 59 text

@holly_cummins #RedHat solution: faster code

Slide 60

Slide 60 text

@holly_cummins the vrroooom model

Slide 61

Slide 61 text

@holly_cummins

Slide 62

Slide 62 text

@holly_cummins invented by Dr. Vroom (really!)

Slide 63

Slide 63 text

@holly_cummins naming is the hardest problem in computer science invented by Dr. Vroom (really!)

Slide 64

Slide 64 text

@holly_cummins naming is the hardest problem in computer science

Slide 65

Slide 65 text

@holly_cummins my vrroooom model

Slide 66

Slide 66 text

No content

Slide 67

Slide 67 text

@holly_cummins #RedHat

Slide 68

Slide 68 text

@holly_cummins #RedHat these two columns are almost the same

Slide 69

Slide 69 text

@holly_cummins #RedHat Energy 1 10 100 Time 1 10 100 energy efficiency across programming languages Python Rust Java Go

Slide 70

Slide 70 text

@holly_cummins #RedHat Energy 1 10 100 Time 1 10 100 the trend line is more or less straight energy efficiency across programming languages Python Rust Java Go

Slide 71

Slide 71 text

No content

Slide 72

Slide 72 text

case study Quarkus

Slide 73

Slide 73 text

@holly_cummins #RedHat Java application frameworks were optimised for dynamism

Slide 74

Slide 74 text

@holly_cummins #RedHat Java application frameworks were optimised for dynamism dynamism has a cost

Slide 75

Slide 75 text

@holly_cummins #RedHat cloud apps are immutable now

Slide 76

Slide 76 text

@holly_cummins #RedHat cloud apps are immutable now

Slide 77

Slide 77 text

@holly_cummins #RedHat a highly dynamic runtime in a container is pointless

Slide 78

Slide 78 text

@holly_cummins Java dynamism

Slide 79

Slide 79 text

@holly_cummins Java dynamism build time

Slide 80

Slide 80 text

@holly_cummins Java dynamism build time runtime

Slide 81

Slide 81 text

@holly_cummins Java dynamism build time runtime

Slide 82

Slide 82 text

@holly_cummins Java dynamism packaging (maven, gradle…) build time runtime

Slide 83

Slide 83 text

@holly_cummins Java dynamism build time runtime

Slide 84

Slide 84 text

@holly_cummins Java dynamism build time runtime

Slide 85

Slide 85 text

@holly_cummins Java dynamism > build time runtime load and parse • config files • properties • yaml • xml • etc.

Slide 86

Slide 86 text

@holly_cummins Java dynamism > build time runtime

Slide 87

Slide 87 text

@holly_cummins Java dynamism @ @ > build time runtime • classpath scanning and annotation discovery • attempt to load class to enable/disable features

Slide 88

Slide 88 text

@holly_cummins Java dynamism @ @ > build time runtime

Slide 89

Slide 89 text

@holly_cummins Java dynamism @ @ > build time runtime build a metamodel of the world

Slide 90

Slide 90 text

@holly_cummins Java dynamism @ @ > build time runtime

Slide 91

Slide 91 text

@holly_cummins Java dynamism @ @ > build time runtime start • thread pools • I/O • etc.

Slide 92

Slide 92 text

@holly_cummins Java dynamism @ @ > build time runtime ready to do work!

Slide 93

Slide 93 text

@holly_cummins what if we start the application more than once? @ @ >

Slide 94

Slide 94 text

@holly_cummins what if we start the application more than once? @ @ > @ @ >

Slide 95

Slide 95 text

@holly_cummins what if we start the application more than once? @ @ > @ @ > @ @ >

Slide 96

Slide 96 text

@holly_cummins what if we start the application more than once? @ @ > @ @ > @ @ > @ @ >

Slide 97

Slide 97 text

@holly_cummins what if we start the application more than once? @ @ > @ @ > @ @ > @ @ >

Slide 98

Slide 98 text

@holly_cummins what if we start the application more than once? @ @ > @ @ > @ @ > @ @ > so much work gets redone every time

Slide 99

Slide 99 text

@holly_cummins Hibernate speed example: JTA auto-wiring

Slide 100

Slide 100 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”);

Slide 101

Slide 101 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”);

Slide 102

Slide 102 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”); Class.forName(“APossibleJTAImplementation”);

Slide 103

Slide 103 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”); Class.forName(“APossibleJTAImplementation”); Class.forName(“AnotherJTAImplementation”);

Slide 104

Slide 104 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”); Class.forName(“APossibleJTAImplementation”); Class.forName(“AnotherJTAImplementation”); …

Slide 105

Slide 105 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”); Class.forName(“APossibleJTAImplementation”); Class.forName(“AnotherJTAImplementation”); Class.forName(“NicheJTAImplementation”); …

Slide 106

Slide 106 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”); Class.forName(“APossibleJTAImplementation”); Class.forName(“AnotherJTAImplementation”); Class.forName(“NicheJTAImplementation”); Class.forName(“VeryNicheJTAImplementation”); …

Slide 107

Slide 107 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”); Class.forName(“APossibleJTAImplementation”); Class.forName(“AnotherJTAImplementation”); Class.forName(“NicheJTAImplementation”); Class.forName(“VeryNicheJTAImplementation”); …

Slide 108

Slide 108 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”); Class.forName(“APossibleJTAImplementation”); Class.forName(“AnotherJTAImplementation”); Class.forName(“NicheJTAImplementation”); Class.forName(“VeryNicheJTAImplementation”); … ~129 auto-wiring attempts

Slide 109

Slide 109 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”); Class.forName(“APossibleJTAImplementation”); Class.forName(“AnotherJTAImplementation”); Class.forName(“NicheJTAImplementation”); Class.forName(“VeryNicheJTAImplementation”); … ~129 auto-wiring attempts every single start.

Slide 110

Slide 110 text

@holly_cummins it’s not just JTA this happens for lots of internal service bindings

Slide 111

Slide 111 text

@holly_cummins the true cost of loaded classes isn’t just memory + start time

Slide 112

Slide 112 text

@holly_cummins the true cost of loaded classes isn’t just memory + start time method dispatching:

Slide 113

Slide 113 text

@holly_cummins interface the true cost of loaded classes isn’t just memory + start time method dispatching:

Slide 114

Slide 114 text

@holly_cummins unused implementation the one we want interface unused implementation unused implementation the true cost of loaded classes isn’t just memory + start time method dispatching:

Slide 115

Slide 115 text

@holly_cummins unused implementation the one we want interface unused implementation unused implementation the true cost of loaded classes isn’t just memory + start time method dispatching:

Slide 116

Slide 116 text

@holly_cummins unused implementation the one we want interface megamorphic call slow dispatching unused implementation unused implementation the true cost of loaded classes isn’t just memory + start time method dispatching:

Slide 117

Slide 117 text

@holly_cummins the true cost of loaded classes isn’t just memory + start time the one we want interface

Slide 118

Slide 118 text

@holly_cummins the true cost of loaded classes isn’t just memory + start time the one we want monomorphic call fast dispatching interface

Slide 119

Slide 119 text

@holly_cummins how do we fix all this?

Slide 120

Slide 120 text

@holly_cummins @ @ > build time runtime what if we initialize at build time?

Slide 121

Slide 121 text

@holly_cummins @ @ > build time runtime what if we initialize at build time?

Slide 122

Slide 122 text

@holly_cummins @ @ > build time runtime start • thread pools • I/O • etc. what if we initialize at build time?

Slide 123

Slide 123 text

@holly_cummins @ @ > build time runtime ready to do work! start • thread pools • I/O • etc. what if we initialize at build time?

Slide 124

Slide 124 text

@holly_cummins @ @ > repeated starts are now efficient

Slide 125

Slide 125 text

@holly_cummins @ @ > repeated starts are now efficient

Slide 126

Slide 126 text

@holly_cummins @ @ > repeated starts are now efficient

Slide 127

Slide 127 text

@holly_cummins @ @ > repeated starts are now efficient

Slide 128

Slide 128 text

@holly_cummins @ @ > repeated starts are now efficient

Slide 129

Slide 129 text

@holly_cummins @ @ > repeated starts are now efficient

Slide 130

Slide 130 text

@holly_cummins @ @ > repeated starts are now efficient less wasted work

Slide 131

Slide 131 text

@holly_cummins #RedHat Setup: • REST + CRUD • large heap • RAPL energy measurement • multiple instances to support high load
 Assumptions: • US energy mix Source: John O’Hara effect on energy consumption (RAPL measurements)

Slide 132

Slide 132 text

@holly_cummins #RedHat Setup: • REST + CRUD • large heap • RAPL energy measurement • multiple instances to support high load
 Assumptions: • US energy mix Source: John O’Hara effect on energy consumption (RAPL measurements) vrrooom model in action quarkus on JVM has the lowest carbon … because it has the highest throughput

Slide 133

Slide 133 text

@holly_cummins throughput startup time + footprint

Slide 134

Slide 134 text

@holly_cummins we beat the trade-off. throughput startup time + footprint

Slide 135

Slide 135 text

@holly_cummins we beat the trade-off. throughput startup time + footprint

Slide 136

Slide 136 text

@holly_cummins we beat the trade-off. throughput startup time + footprint it’s a double-win.

Slide 137

Slide 137 text

No content

Slide 138

Slide 138 text

@holly_cummins we beat another trade-off. human efficiency machine efficiency

Slide 139

Slide 139 text

@holly_cummins we beat another trade-off. human efficiency machine efficiency

Slide 140

Slide 140 text

@holly_cummins we beat another trade-off. human efficiency machine efficiency another double-win.

Slide 141

Slide 141 text

@holly_cummins #RedHat boilerplate code

Slide 142

Slide 142 text

@holly_cummins #RedHat boilerplate code

Slide 143

Slide 143 text

@holly_cummins #RedHat package com.example; import org.jboss.logging.Logger; public class Thing { private static final Logger log = Logger.getLogger(Thing.class); public void doSomething() { log.info("It works!"); } } example: logging

Slide 144

Slide 144 text

@holly_cummins #RedHat package com.example; import org.jboss.logging.Logger; public class Thing { private static final Logger log = Logger.getLogger(Thing.class); public void doSomething() { log.info("It works!"); } } example: logging import io.quarkus.logging.Log; Log

Slide 145

Slide 145 text

@holly_cummins #RedHat @ApplicationScoped public class GreetingRepository { public Entity findByName(int name) { return find("name", name).firstResult(); } void persist(Entity entity) {} void delete(Entity entity) {} Entity findById(Id id) {} List list(String query, Sort sort, Object... params) { return null; } Stream stream(String query, Object... params) { return null; } long count() { return 0; } long count(String query, Object... params) { return 0; } } example: hibernate with panache

Slide 146

Slide 146 text

@holly_cummins #RedHat @ApplicationScoped public class GreetingRepository { public Entity findByName(int name) { return find("name", name).firstResult(); } void persist(Entity entity) {} void delete(Entity entity) {} Entity findById(Id id) {} List list(String query, Sort sort, Object... params) { return null; } Stream stream(String query, Object... params) { return null; } long count() { return 0; } long count(String query, Object... params) { return 0; } } example: hibernate with panache

Slide 147

Slide 147 text

@holly_cummins #RedHat DAO example: hibernate with panache @ApplicationScoped public class GreetingRepository implements PanacheRepository { public Entity findByName(int name) { return find("name", name).firstResult(); } }

Slide 148

Slide 148 text

@holly_cummins #RedHat developer joy

Slide 149

Slide 149 text

@holly_cummins #RedHat no regrets solution: we got rid of dynamism we didn’t even want, and made everything better

Slide 150

Slide 150 text

@holly_cummins #RedHat the ai-lephant in the room

Slide 151

Slide 151 text

@holly_cummins #RedHat https://www.sify.com/ai-analytics/the-hilarious-and-horrifying-hallucinations-of-ai/

Slide 152

Slide 152 text

@holly_cummins #RedHat “What is the world record for crossing the English channel entirely on foot?” https://www.sify.com/ai-analytics/the-hilarious-and-horrifying-hallucinations-of-ai/

Slide 153

Slide 153 text

@holly_cummins #RedHat “What is the world record for crossing the English channel entirely on foot?” “The world record for crossing the English Channel entirely on foot is held by Christof Wandratsch of Germany, who completed the crossing in 14 hours and 51 minutes on August 14, 2020.” https://www.sify.com/ai-analytics/the-hilarious-and-horrifying-hallucinations-of-ai/

Slide 154

Slide 154 text

@holly_cummins #RedHat

Slide 155

Slide 155 text

@holly_cummins #RedHat

Slide 156

Slide 156 text

@holly_cummins #RedHat

Slide 157

Slide 157 text

@holly_cummins #RedHat

Slide 158

Slide 158 text

@holly_cummins #RedHat

Slide 159

Slide 159 text

@holly_cummins #RedHat

Slide 160

Slide 160 text

@holly_cummins #RedHat 70% unnecessary code

Slide 161

Slide 161 text

@holly_cummins #RedHat “illusion of efficiency”

Slide 162

Slide 162 text

@holly_cummins #RedHat we have a solution

Slide 163

Slide 163 text

@holly_cummins #RedHat -small fine-tuned models -small model + RAG -hybrid: symbolic reasoning + model solution:

Slide 164

Slide 164 text

@holly_cummins #RedHat a common pitfall the illusion of efficiency

Slide 165

Slide 165 text

@holly_cummins #RedHat

Slide 166

Slide 166 text

@holly_cummins #RedHat

Slide 167

Slide 167 text

@holly_cummins #RedHat how efficient can we get?

Slide 168

Slide 168 text

@holly_cummins #RedHat Jevon’s paradox limit 1

Slide 169

Slide 169 text

@holly_cummins #RedHat what we imagine when we widen roads

Slide 170

Slide 170 text

@holly_cummins #RedHat what we get

Slide 171

Slide 171 text

@holly_cummins #RedHat limit 2

Slide 172

Slide 172 text

@holly_cummins #RedHat even for machines, there is a limit to efficiency limit 2

Slide 173

Slide 173 text

@holly_cummins #RedHat even for machines, there is a limit to efficiency …and it’s lower than you think limit 2

Slide 174

Slide 174 text

@holly_cummins #RedHat source: http://geosci.uchicago.edu/~moyer/GEOS24705/2016/Assignments/PS7.pdf physics limit 2

Slide 175

Slide 175 text

@holly_cummins #RedHat limit 2

Slide 176

Slide 176 text

@holly_cummins #RedHat limit 2

Slide 177

Slide 177 text

@holly_cummins #RedHat theoretical max efficiency of a combustion engine: limit 2

Slide 178

Slide 178 text

@holly_cummins #RedHat theoretical max efficiency of a combustion engine: 37% limit 2

Slide 179

Slide 179 text

@holly_cummins #RedHat theoretical max efficiency of a combustion engine: 37% … so the engine doesn’t wear out: limit 2

Slide 180

Slide 180 text

@holly_cummins #RedHat theoretical max efficiency of a combustion engine: 37% … so the engine doesn’t wear out: ~20% limit 2

Slide 181

Slide 181 text

@holly_cummins #RedHat the value of slack

Slide 182

Slide 182 text

@holly_cummins #RedHat the value of slack

Slide 183

Slide 183 text

@holly_cummins #RedHat the value of slack

Slide 184

Slide 184 text

@holly_cummins #RedHat the value of slack naming is still the hardest problem in computer science

Slide 185

Slide 185 text

@holly_cummins #RedHat the value of slack

Slide 186

Slide 186 text

@holly_cummins #RedHat

Slide 187

Slide 187 text

@holly_cummins #RedHat speed

Slide 188

Slide 188 text

@holly_cummins #RedHat speed vs resiliency

Slide 189

Slide 189 text

@holly_cummins #RedHat #RedHat

Slide 190

Slide 190 text

@holly_cummins #RedHat less efficient (more legs than needed) #RedHat

Slide 191

Slide 191 text

@holly_cummins #RedHat highly efficient (optimum number of legs) less efficient (more legs than needed) #RedHat

Slide 192

Slide 192 text

@holly_cummins #RedHat highly efficient (optimum number of legs) less efficient (more legs than needed) resilient #RedHat

Slide 193

Slide 193 text

@holly_cummins #RedHat highly efficient (optimum number of legs) less efficient (more legs than needed) resilient #RedHat

Slide 194

Slide 194 text

@holly_cummins #RedHat highly efficient (optimum number of legs) no resiliency less efficient (more legs than needed) resilient #RedHat

Slide 195

Slide 195 text

@holly_cummins #RedHat highly efficient (optimum number of legs) no resiliency less efficient (more legs than needed) resilient #RedHat resiliency lowers efficiency

Slide 196

Slide 196 text

@holly_cummins #RedHat it’s the same for people

Slide 197

Slide 197 text

@holly_cummins #RedHat it’s the same for people all work and no play is … not efficient

Slide 198

Slide 198 text

@holly_cummins #RedHat

Slide 199

Slide 199 text

@holly_cummins #RedHat hi colleague, could you ple-

Slide 200

Slide 200 text

@holly_cummins #RedHat hi colleague, could you ple- argh! &!*$*%@!{*%^!^! busy! NO! I CANNOT!

Slide 201

Slide 201 text

@holly_cummins #RedHat research shows: not-work is good for business.

Slide 202

Slide 202 text

@holly_cummins #RedHat research shows: not-work is good for business.

Slide 203

Slide 203 text

@holly_cummins #RedHat studies show…

Slide 204

Slide 204 text

@holly_cummins #RedHat studies show… employee slack

Slide 205

Slide 205 text

@holly_cummins #RedHat studies show… employee slack

Slide 206

Slide 206 text

@holly_cummins #RedHat studies show… employee slack harder working

Slide 207

Slide 207 text

@holly_cummins #RedHat studies show… employee slack harder working more productivity

Slide 208

Slide 208 text

@holly_cummins #RedHat studies show… employee slack harder working more productivity less sick leave

Slide 209

Slide 209 text

@holly_cummins #RedHat https:/ /hbr.org/2012/01/positive-intelligence

Slide 210

Slide 210 text

@holly_cummins #RedHat “Your brain at positive is 31% more productive than your brain at negative, neutral or stressed. " https:/ /hbr.org/2012/01/positive-intelligence

Slide 211

Slide 211 text

#RedHat @holly_cummins

Slide 212

Slide 212 text

@holly_cummins #RedHat https:/ /wrap.warwick.ac.uk/63228/7/WRAP_Oswald_681096.pdf

Slide 213

Slide 213 text

@holly_cummins #RedHat "Individuals [who just watched a comedy video] have approximately 12% greater productivity." https:/ /wrap.warwick.ac.uk/63228/7/WRAP_Oswald_681096.pdf

Slide 214

Slide 214 text

@holly_cummins #RedHat play

Slide 215

Slide 215 text

@holly_cummins #RedHat play efficiency

Slide 216

Slide 216 text

@holly_cummins #RedHat doing nothing

Slide 217

Slide 217 text

@holly_cummins #RedHat doing nothing efficiency

Slide 218

Slide 218 text

@holly_cummins #RedHat the default mode network idle minds can solve hard problems

Slide 219

Slide 219 text

#RedHat @holly_cummins

Slide 220

Slide 220 text

#RedHat @holly_cummins

Slide 221

Slide 221 text

#RedHat @holly_cummins

Slide 222

Slide 222 text

#RedHat @holly_cummins 14% took showers specifically for the purpose of coming up with ideas

Slide 223

Slide 223 text

@holly_cummins #RedHat psychology says we need idle time; maths agrees

Slide 224

Slide 224 text

@holly_cummins #RedHat queueing theory says systems need to run under-capacity to function psychology says we need idle time; maths agrees

Slide 225

Slide 225 text

@holly_cummins #RedHat queuing theory basics

Slide 226

Slide 226 text

@holly_cummins #RedHat queuing theory basics arrival process

Slide 227

Slide 227 text

@holly_cummins #RedHat queuing theory basics arrival process Poisson distribution

Slide 228

Slide 228 text

@holly_cummins #RedHat queuing theory basics queue arrival process Poisson distribution

Slide 229

Slide 229 text

@holly_cummins #RedHat queuing theory basics queue arrival process Poisson distribution

Slide 230

Slide 230 text

@holly_cummins #RedHat queuing theory basics queue arrival process servers Poisson distribution

Slide 231

Slide 231 text

@holly_cummins #RedHat queuing theory basics queue arrival process servers Poisson distribution

Slide 232

Slide 232 text

@holly_cummins #RedHat queuing theory basics queue arrival process servers completed work Poisson distribution

Slide 233

Slide 233 text

@holly_cummins #RedHat if arrival rates are low, servers will be idle queue arrival process servers completed work

Slide 234

Slide 234 text

@holly_cummins #RedHat queue arrival process servers completed work if server capacity is too low, wait times are high

Slide 235

Slide 235 text

@holly_cummins #RedHat utilisation lead time http://brodzinski.com/2015/01/slack-time-value.html assuming Poisson distribution of arrivals

Slide 236

Slide 236 text

@holly_cummins #RedHat utilisation lead time http://brodzinski.com/2015/01/slack-time-value.html assuming Poisson distribution of arrivals 80% utilisation → 90% utilisation: wait times double

Slide 237

Slide 237 text

@holly_cummins #RedHat utilisation http://brodzinski.com/2015/01/slack-time-value.html cost delay cost assuming Poisson distribution of arrivals 80% utilisation → 90% utilisation: wait times double

Slide 238

Slide 238 text

@holly_cummins #RedHat utilisation http://brodzinski.com/2015/01/slack-time-value.html cost delay cost cost of idle capacity assuming Poisson distribution of arrivals 80% utilisation → 90% utilisation: wait times double

Slide 239

Slide 239 text

@holly_cummins #RedHat

Slide 240

Slide 240 text

@holly_cummins #RedHat cool and bouncy

Slide 241

Slide 241 text

@holly_cummins #RedHat cool and bouncy most efficient land animal

Slide 242

Slide 242 text

@holly_cummins #RedHat cool and bouncy most efficient land animal uncool and floppy

Slide 243

Slide 243 text

@holly_cummins #RedHat cool and bouncy most efficient land animal uncool and floppy whole body is basically slack

Slide 244

Slide 244 text

@holly_cummins #RedHat cool and bouncy most efficient land animal uncool and floppy whole body is basically slack most efficient animal

Slide 245

Slide 245 text

@holly_cummins the trade-off isn’t what we think it is being effective working less

Slide 246

Slide 246 text

@holly_cummins the trade-off isn’t what we think it is being effective working less

Slide 247

Slide 247 text

@holly_cummins the trade-off isn’t what we think it is being effective working less another double-win.

Slide 248

Slide 248 text

@holly_cummins #RedHat inverse Jevon’s paradox doing less achieves more

Slide 249

Slide 249 text

@holly_cummins #RedHat hygge

Slide 250

Slide 250 text

@holly_cummins #RedHat hygge “lazy cosy developers”

Slide 251

Slide 251 text

@holly_cummins #RedHat tl;dpa (too long; didn’t pay attention)

Slide 252

Slide 252 text

@holly_cummins #RedHat tl;dpa ⁃ don’t accept waste; our world deserves better (too long; didn’t pay attention)

Slide 253

Slide 253 text

@holly_cummins #RedHat tl;dpa ⁃ don’t accept waste; our world deserves better ⁃ work less; achieve more (too long; didn’t pay attention)

Slide 254

Slide 254 text

@holly_cummins #RedHat tl;dpa ⁃ don’t accept waste; our world deserves better ⁃ work less; achieve more ⁃ happiness is not waste (too long; didn’t pay attention)

Slide 255

Slide 255 text

@holly_cummins #RedHat tl;dpa ⁃ don’t accept waste; our world deserves better ⁃ work less; achieve more ⁃ happiness is not waste ⁃ idleness is not waste (too long; didn’t pay attention)

Slide 256

Slide 256 text

@holly_cummins #RedHat tl;dpa ⁃ don’t accept waste; our world deserves better ⁃ work less; achieve more ⁃ happiness is not waste ⁃ idleness is not waste ⁃ look for double-wins everywhere (too long; didn’t pay attention)

Slide 257

Slide 257 text

Rate this session in the GOTO Guide and claim your reward slides https://hollycummins.com/efficiency-goto/