Slide 1

Slide 1 text

A PRAGMATIC INTRODUCTION TO CATEGORY THEORY @DANIELASFREGOLA SCALA IO 2017 github.com/DanielaSfregola/tutorial-cat

Slide 2

Slide 2 text

Every good idea is discovered twice: once by a mathematician once by a computer scientist — Philip Wadler

Slide 3

Slide 3 text

A Pragmatic Intro to Category Theory by Daniela Sfregola THURSDAY 10.00 AM vs A crash course on Category Theory by Bartosz Milewski FRIDAY 15.30 PM

Slide 4

Slide 4 text

HELLOOOOO > ex Java Developer > OOP background > I am not a mathematician !

Slide 5

Slide 5 text

I AM NOT A MATHEMATICIAN

Slide 6

Slide 6 text

YOU DO NOT NEED TO KNOW CATEGORY THEORY TO WRITE SCALA CODE

Slide 7

Slide 7 text

YOU DO NOT NEED TO KNOW CATEGORY THEORY TO WRITE FUNCTIONAL CODE

Slide 8

Slide 8 text

CATEGORY THEORY DEEPER UNDERSTANDING ON OUR CODE

Slide 9

Slide 9 text

HOW DO WE REASON ?

Slide 10

Slide 10 text

COMPOSITION ABSTRACTION

Slide 11

Slide 11 text

CATEGORY THEORY HOW THINGS COMPOSE

Slide 12

Slide 12 text

ARROW THEORY CATEGORY THEORY HOW THINGS COMPOSE

Slide 13

Slide 13 text

WHAT IS A CATEGORY?

Slide 14

Slide 14 text

COMPOSITION LAW

Slide 15

Slide 15 text

IDENTITY LAW

Slide 16

Slide 16 text

COMPOSITION + ASSOCIATIVITY

Slide 17

Slide 17 text

CATEGORY'S RULES > Identity > Composition > Associativity

Slide 18

Slide 18 text

A PRACTICAL EXAMPLE

Slide 19

Slide 19 text

CATEGORY WITH 1 OBJECT

Slide 20

Slide 20 text

CATEGORY WITH 1 OBJECT = MONOID

Slide 21

Slide 21 text

MONOID'S RULES Identity n o id == id o n == n Composition forall x, y => x o y Associativity x o (y o z) == (x o y) o z

Slide 22

Slide 22 text

SCALACHECK FTW! MonoidSpec // n o id == id o n == n property("identity") = forAll { n: A => monoid.compose(n, id) == n && monoid.compose(id, n) == n } // forall x, y => x o y property("composition") = forAll { (x: A, y: A) => monoid.compose(x, y).isInstanceOf[A] } // x o (y o z) == (x o y) o z property("associativity") = forAll { (x: A, y: A, z: A) => val xY = monoid.compose(x,y) val yZ = monoid.compose(y,z) monoid.compose(xY, z) == monoid.compose(x, yZ) }

Slide 23

Slide 23 text

A PRACTICAL EXAMPLE

Slide 24

Slide 24 text

MONOID trait Monoid[A] { def identity: A def compose(x: A, y: A): A }

Slide 25

Slide 25 text

MONOID INSTANCES (1) implicit val intMonoid: Monoid[Int] = new Monoid[Int] { def compose(x: Int, y: Int): Int = x + y def identity: Int = 0 }

Slide 26

Slide 26 text

MONOID INSTANCES (2) implicit val stringMonoid: Monoid[String] = new Monoid[String] { def compose(x: String, y: String): String = x + y def identity: String = "" }

Slide 27

Slide 27 text

CATEGORY WITH 1+ OBJECT

Slide 28

Slide 28 text

CATEGORY IN A BOX

Slide 29

Slide 29 text

CATEGORY IN A BOX > Objects are in a Box > All the arrows are copied

Slide 30

Slide 30 text

LIFTING: CONTEXT VS CONTENT

Slide 31

Slide 31 text

EXAMPLE OF BOXES > Option > Future > Try > List > Either

Slide 32

Slide 32 text

CATEGORY IN A BOX = FUNCTOR

Slide 33

Slide 33 text

FUNCTOR'S RULES Identity map(id) == id Composition map(g o f) == map(g) o map(f) Associativity map(h o g) o map(f) == map(h) o map(g o f)

Slide 34

Slide 34 text

SCALACHECK FTW! FunctorSpec // map_id == id property("identity") = forAll { box: Box[A] => map(box)(identity) == box } // map_(g o f) == (map_g) o (map_f) property("composition") = forAll { boxA: Box[A] => val fG = f andThen g val mapFG: Box[A] => Box[C] = map(_)(fG) mapFG(boxA) == (mapF andThen mapG)(boxA) } // map_(h o g) o map_f == map_h o map_(g o f) property("associativity") = forAll { boxA: Box[A] => val fG = f andThen g val mapFG: Box[A] => Box[C] = map(_)(fG) val gH = g andThen h val mapGH: Box[B] => Box[D] = map(_)(gH) (mapF andThen mapGH)(boxA) == (mapFG andThen mapH)(boxA) }

Slide 35

Slide 35 text

LIFTING: CONTEXT VS CONTENT

Slide 36

Slide 36 text

FUNCTOR class Functor[Box[_]] { def map[A, B](boxA: Box[A]) (f: A => B): Box[B] }

Slide 37

Slide 37 text

MAYBE sealed abstract class Maybe[+A] final case class Just[A](a: A) extends Maybe[A] case object Empty extends Maybe[Nothing]

Slide 38

Slide 38 text

FUNCTOR FOR MAYBE implicit val maybeFunctor: Functor[Maybe] = new Functor[Maybe] { override def map[A, B](boxA: Maybe[A]) (f: A => B): Maybe[B] = boxA match { case Just(a) => Just(f(a)) case Empty => Empty } }

Slide 39

Slide 39 text

BOX FUNCTION + BOX VALUES

Slide 40

Slide 40 text

COMBINE MORE BOXES INTO ONE = APPLICATIVE

Slide 41

Slide 41 text

APPLICATIVE'S RULES > Identity > Composition > Associativity > Homorphism > Interchange ...and more!

Slide 42

Slide 42 text

SCALACHECK FTW! ApplicativeSpec extends FunctorSpec // ap(id)(a) == a property("identity") = forAll { box: Box[A] => ap(pureIdentity)(box) == box } // ap(pure(f))(pure(a)) == pure(f(a)) property("homorphism") = forAll { a: A => ap(pureF)(pure(a)) == pure(f(a)) } // {x => pure(x)}(a) == pure(a) property("interchange") = forAll { a: A => toPureA(a) == pure(a) } // pure(h o g o f) == ap(pure(h o g))(pure(f(a))) property("composition") = forAll { a: A => val gH = g andThen h val fGH = f andThen gH val pureGH = pure(gH) val pureFA = pure(f(a)) pure(fGH(a)) == ap(pureGH)(pureFA) }

Slide 43

Slide 43 text

COMBINE BOXES TOGETHER > How to create a new box > How to combine their values together

Slide 44

Slide 44 text

APPLICATIVE class Applicative[Box[_]] extends Functor[Box] { def pure[A](a: A): Box[A] def ap[A, B](boxF: Box[A => B])(boxA: Box[A]): Box[B] /*************/ def map[A, B](boxA: Box[A])(f: A => B): Box[B] = ap[A, B](pure(f))(boxA) }

Slide 45

Slide 45 text

BOX FUNCTION + BOX VALUES

Slide 46

Slide 46 text

APPLICATIVE class Applicative[Box[_]] extends Functor[Box] { def pure[A](a: A): Box[A] def ap[A, B](boxF: Box[A => B])(value: Box[A]): Box[B] def ap2[A1, A2, B](boxF: Box[(A1, A2) => B]) (value1: Box[A1], value2: Box[A2]): Box[B] // up to 22 values! // same for map }

Slide 47

Slide 47 text

APPLICATIVE FOR MAYBE implicit val maybeApplicative: Applicative[Maybe] = new Applicative[Maybe] { def pure[A](a: A): Maybe[A] = Just(a) def ap[A, B](boxF: Maybe[A => B])(boxA: Maybe[A]): Maybe[B] = (boxF, boxA) match { case (Just(f), Just(a)) => pure(f(a)) case _ => Empty } }

Slide 48

Slide 48 text

BOX IN A BOX

Slide 49

Slide 49 text

BOX IN A BOX

Slide 50

Slide 50 text

FUSE TWO BOXES TOGETHER = MONAD

Slide 51

Slide 51 text

MONAD'S RULES > Identity > Composition > Associativity

Slide 52

Slide 52 text

SCALACHECK FTW! MonadSpec extends ApplicativeSpec // flatMap(pure(a))(f(a)) == f(a) property("left identity") = forAll { a: A => flatMap(pure(a))(toPureFa) == toPureFa(a) } // flatMap(pure(a))(f(a)) == f(a) property("right identity") = forAll { a: A => flatMap(toPureFa(a))(pure) == toPureFa(a) } // pure(h o g o f) == ap(pure(h o g))(pure(f(a))) property("associativity") = forAll { boxA: Box[A] => val left: Box[C] = flatMap(flatMap(boxA)(toPureFa))(toPureGb) val right: Box[C] = flatMap(boxA)(a => flatMap(toPureFa(a))(toPureGb)) left == right }

Slide 53

Slide 53 text

MONAD (AS FUNCTOR) class Monad[Box[_]] extends Functor[Box] { // map from Functor def flatten[A](bb: Box[Box[A]]): Box[A] /*******/ def flatMap[A, B](valueA: Box[A]) (f: A => Box[B]): Box[B] = { val bb: Box[Box[B]] = map(valueA)(f) bb.flatten } }

Slide 54

Slide 54 text

BOXES IN A SEQUENCE

Slide 55

Slide 55 text

FOR-COMPREHENSION val boxA: Box[A] def toBoxB: A => Box[B] def toBoxC: B => Box[C] def toBoxD: C => Box[D] for { a <- boxA b <- toBoxB(a) c <- toBoxC(b) d <- toBoxD(c) } yield d

Slide 56

Slide 56 text

MONAD (AS APPLICATIVE) trait Monad[Box[_]] extends Applicative[Box] { // pure from Applicative def flatMap[A, B](boxA: Box[A])(f: A => Box[B]): Box[B] /******/ def flatten[A](boxBoxA: Box[Box[A]]): Box[A] = flatMap(boxBoxA)(identity) def ap[A, B](boxF: Box[A => B])(boxA: Box[A]): Box[B] = flatMap(boxF)(f => map(boxA)(f)) def map[A, B](boxA: Box[A])(f: A => B): Box[B] = flatMap(boxA)(a => pure(f(a))) }

Slide 57

Slide 57 text

MONAD FOR MAYBE implicit val maybeMonad: Monad[Maybe] = new Monad[Maybe] { def flatMap[A, B](boxA: Maybe[A]) (f: (A) => Maybe[B]): Maybe[B] = boxA match { case Just(a) => f(a) case Empty => Empty } def pure[A](a: A): Maybe[A] = maybeApplicative.pure(a) }

Slide 58

Slide 58 text

MONAD IS A MONOID IN THE CATEGORY OF ENDOFUNCTORS

Slide 59

Slide 59 text

MONAD MONOID => pure + flatten ENDOFUNCTORS => map

Slide 60

Slide 60 text

SUMMARY CATEGORY THEORY >> how things compose MONOID >> combining 2 values into 1 FUNCTOR >> values lifted to a context APPLICATIVE >> independent values applied to a function in a context MONAD >> ops in sequence in a context

Slide 61

Slide 61 text

Band BoundedSemilattice CommutativeGroup CommutativeMonoid CommutativeSemigroup Eq Group Semigroup Monoid Order PartialOrder Semilattice Alternative Applicative ApplicativeError Apply Bifoldable Bimonad Bitraverse Cartesian CoflatMap Comonad ContravariantCartesian FlatMap Foldable Functor Inject InvariantMonoidal Monad MonadError MonoidK NotNull Reducible SemigroupK Show ApplicativeAsk Bifunctor Contravariant Invariant Profunctor Strong Traverse Arrow Category Choice Compose Cats Type Classes kernel core/functor core/arrow core The highlighted type classes are the first ones you should learn. They’re well documented and well-known so it’s easy to get help. a |+| b a === b a =!= b a |@| b a *> b a <* b a <+> b a >>> b a <<< b a > b a >= b a < b a <= b Sync Async Effect LiftIO effect Some type classes introduce symbolic operators. NonEmptyTraverse InjectK CommutativeArrow CommutativeFlatMap CommutativeMonad ApplicativeLayer FunctorLayer ApplicativeLayerFunctor FunctorLayerFunctor ApplicativeLocal FunctorEmpty FunctorListen FunctorTell FunctorRaise MonadLayer MonadLayerFunctor MonadLayerControl MonadState TraverseEmpty Functor Applicative Monad Traverse mtl MTL type classes do not extend core type classes directly, but the effect is similar; the dashed line can be read “implies”.

Slide 62

Slide 62 text

FORGET ABOUT THE DETAILS FOCUS ON HOW THINGS COMPOSE

Slide 63

Slide 63 text

WANNA KNOW MORE? > Category Theory for the WH by @PhilipWadler > Category Theory by @BartoszMilewski > Cats-Infographics by Rob Norris - @tpolecat > Cats Documentation - Type Classes

Slide 64

Slide 64 text

THANK YOU! > Twitter: @DanielaSfregola > Blog: danielasfregola.com github.com/DanielaSfregola/tutorial-cat