Slide 96
Slide 96 text
Rasterization-based differentiable rendering (mesh)
- [Chen+ 2019] W. Chen, H. Ling, J. Gao, E. Smith, J. Lehtinen, A. Jacobson, and S. Fidler. “Learning to predict 3D
objects with an interpolation-based differentiable renderer.” NeurIPS 2019.
- [Kato+ 2018] H. Kato, Y. Ushiku, and T. Harada. “Neural 3d mesh renderer.” CVPR 2018.
- [Liu+ 2019] S. Liu, T. Li, W. Chen, and H. Li. “Soft rasterizer: A differentiable renderer for image-based 3D
reasoning.” ICCV 2019.
- [Loper & Black 2014] M. Loper, and M. Black. “OpenDR: An approximate differentiable renderer.” ECCV 2014.
- [Murthy+ 2019] J. Murthy, E. Smith, J-F Lafleche,C. Tsang, A. Rozantsev, W. Chen, T. Xiang, R. Lebaredian, and
S. Fidler. “Kaolin: A PyTorch Library for Accelerating 3D Deep Learning Research.” arXiv 2019.
- [Ravi+ 2020] N. Ravi and J. Reizenstein and D. Novotny and T. Gordon and W-Y Lo, J. Johnson and G. Gkioxari.
“PyTorch3D.” 2020.
- [Valentin+ 2019] J. Valentin, C. Keskin, P. Pidlypenskyi, A. Makadia, A. Sud, and S. Bouaziz. “TensorFlow
Graphics: Computer Graphics Meets Deep Learning.” 2019.
References
#96