Slide 1

Slide 1 text

ʮ͸͡Ίͯͷύλʔϯೝࣝʯಡॻձ ୈ 4 ষ 2017 ೥ 11 ݄ 9 ೔
 horiem

Slide 2

Slide 2 text

Πϯτϩ: 100 ԁۄͷਅآ൑ఆ ॏ͞ [g] ௚ܘ [μm] ൒ܘ [μm] … ϥϕϧ 4.801 22601 11301 … ਅ 4.751 22599 11300 … آ 4.799 22602 11301 … ਅ … … … … …

Slide 3

Slide 3 text

Πϯτϩ: 100 ԁۄͷਅآ൑ఆ ॏ͞ [g] ௚ܘ [μm] ൒ܘ [μm] … ϥϕϧ 4.801 22601 11301 … ਅ 4.751 22599 11300 … آ 4.799 22602 11301 … ਅ … … … … … ૬ؔ͋ΔͷͰ͸ʁ

Slide 4

Slide 4 text

Πϯτϩ: 100 ԁۄͷਅآ൑ఆ ॏ͞ [g] ௚ܘ [μm] ൒ܘ [μm] … ϥϕϧ 4.801 22601 11301 … ਅ 4.751 22599 11300 … آ 4.799 22602 11301 … ਅ … … … … … ૬ؔ͋ΔͷͰ͸ʁ

Slide 5

Slide 5 text

ॏ͞ [g] ௚ܘ [μm] ൒ܘ [μm] … ϥϕϧ 4.801 22601 11301 … ਅ 4.751 22599 11300 … آ 4.799 22602 11301 … ਅ … … … … … Πϯτϩ: 100 ԁۄͷਅآ൑ఆ 100 ԁۄͷฏۉʢ4.8 gʣΑΓܰͦ͏͕ͩ
 ࠩ͸ 0.05 [g]

Slide 6

Slide 6 text

ॏ͞ [g] ௚ܘ [μm] ൒ܘ [μm] … ϥϕϧ 4.801 22601 11301 … ਅ 4.751 22599 11300 … آ 4.799 22602 11301 … ਅ … … … … … Πϯτϩ: 100 ԁۄͷਅآ൑ఆ 100 ԁۄͷฏۉʢ22600 μmʣͱಉ͡Α͏͕ͩ
 ࠩ͸ 2 [μm] >> 0.05

Slide 7

Slide 7 text

ॏ͞ [g] ௚ܘ [μm] ൒ܘ [μm] … ϥϕϧ 4.801 22601 11301 … ਅ 4.751 22599 11300 … آ 4.799 22602 11301 … ਅ … … … … … Πϯτϩ: 100 ԁۄͷਅآ൑ఆ • ಛ௃ؒͷ૬ؔΛͳ͍ͨ͘͠ • ୯Ґ͕ҧ͍ͬͯͯ΋౷ܭతʹൺֱ͍ͨ͠

Slide 8

Slide 8 text

ॏ͞ [g] ௚ܘ [μm] ൒ܘ [μm] … ϥϕϧ 4.801 22601 11301 … ਅ 4.751 22599 11300 … آ 4.799 22602 11301 … ਅ … … … … … Πϯτϩ: 100 ԁۄͷਅآ൑ఆ • ಛ௃ؒͷ૬ؔΛͳ͍ͨ͘͠ • ୯Ґ͕ҧ͍ͬͯͯ΋౷ܭతʹൺֱ͍ͨ͠ ➡ ؍ଌσʔλΛม׵͠Α͏ʂ

Slide 9

Slide 9 text

4 ষͷ΋͘͡ 4. ֬཰Ϟσϧͱࣝผؔ਺ 1. ؍ଌσʔλͷઢܗม׵ 2. ֬཰Ϟσϧ 3. ֬཰Ϟσϧύϥϝʔλͷ࠷໬ਪఆ

Slide 10

Slide 10 text

4 ষͷ΋͘͡ 4. ֬཰Ϟσϧͱࣝผؔ਺ 1. ؍ଌσʔλͷઢܗม׵ 2. ֬཰Ϟσϧ 3. ֬཰Ϟσϧύϥϝʔλͷ࠷໬ਪఆ

Slide 11

Slide 11 text

ฏۉϕΫτϧͱڞ෼ࢄߦྻ

Slide 12

Slide 12 text

ฏۉϕΫτϧ • ֤ಛ௃ྔʢશ෦Ͱ d ݸʣͷฏۉΛฒ΂ͨ΋ͷ • ྫ͑͹ɿ µ = ( µ1, µ2, . . . , µd)T = ( E { x1 } , E { x2 } , . . . , E { xd })T µ = (µweight, µdiameter, µradius)T = (4.80[g], 2260[µm], 1130[µm])T

Slide 13

Slide 13 text

ظ଴஋ • ֬཰ม਺͕࿈ଓͷͱ͖ʢ֬཰ີ౓ؔ਺ʣ µi = E { xi } = Z dxi xip ( xi) µi = E { xi } = X k x (k) i P ⇣ x (k) i ⌘ • ֬཰ม਺͕཭ࢄͷͱ͖ʢ֬཰࣭ྔؔ਺ʣ µ = ¯ x = 1 N N X i=1 xi • ؍ଌσʔλ͕ N ݸ༩͑ΒΕ͍ͯΔͱ͖

Slide 14

Slide 14 text

पล֬཰ • ֬཰ม਺͕཭ࢄͷͱ͖ʢ֬཰࣭ྔؔ਺ʣ • ஫໨͍ͯ͠Δಛ௃ྔͰͳ͍΋ͷ͸ͥΜͿ࿨ʢੵ෼ʣ
 ΛͱΔ ϋϯόʔά͕޷͖͔ʁ yes no sum ΤϏϑϥΠ ͕޷͖͔ʁ yes 60 40 100 no 30 20 50 sum 90 60 p ( xi) = Z dx1 Z dx2 · · · Z dxi 1 Z dxi+1 · · · Z dxd p ( x1, x2, . . . , xd)

Slide 15

Slide 15 text

ڞ෼ࢄߦྻ ⌃ = Var { x } = E ( x µ )( x µ )T = 0 B @ E {( x1 µ1)( x1 µ1)} . . . E {( x1 µ1)( xd µd)} . . . ... . . . E {( xd µd)( x1 µ1)} . . . E {( xd µd)( xd µd)} 1 C A = ( ij)

Slide 16

Slide 16 text

ڞ෼ࢄߦྻ • ؍ଌσʔλ͕ N ݸ༩͑ΒΕ͍ͯΔͱ͖ ij = 1 N N X n=1 ( xni µi)( xnj µj)

Slide 17

Slide 17 text

ڞ෼ࢄߦྻ • ຊདྷ͸ෆภ෼ࢄΛ࢖͏΂͖ • ظ଴஋Λͱͬͨͱ͖ʹਅͷ෼ࢄʹ
 ऩଋ͢ΔΑ͏ௐઅ͢Δ • ඪຊ਺͕ଟ͍৔߹͸େࠩͳ͍ͷͰ
 ͜͜Ͱ͸γϯϓϧʹ͍ͯ͠Δ sij = 1 N 1 N X n=1 ( xni µi)( xnj µj)

Slide 18

Slide 18 text

෼ࢄͱඪ४ภࠩ • ෼ࢄ͸ฏۉ͔Βͷೋ৐ޡࠩͷظ଴஋ • େ͖͚Ε͹͹Β͍͍ͭͯΔ • ෼ࢄͷฏํ͕ࠜඪ४ภࠩ • ෼ࢄͩͱಛ௃ྔͷ୯Ґ͕มΘͬͯ͠·͏ͨΊ
 ΋ͱͷ୯Ґʹ໭͢ 2 i = ii = E ( xi µi)2 i = q 2 i

Slide 19

Slide 19 text

ڞ෼ࢄͱ૬ؔ܎਺ • ڞ෼ࢄ͸ҟͳΔಛ௃ྔؒͰ͹Β͖ͭํ͕
 ಉ͔͡Ͳ͏͔Λಛ௃͚ͮΔ • ਖ਼ͷ૬͕ؔ͋Ε͹ +ɺෛͷ૬͕ؔ͋Ε͹ - • ڞ෼ࢄ͸୯ҐΛ͍࣋ͬͯΔͨΊ
 ୯Ґ͕ҧ͏ڞ෼ࢄͲ͏͠ΛൺֱͰ͖ͳ͍ ij = E {( xi µi)( xj µj)}

Slide 20

Slide 20 text

ڞ෼ࢄͱ૬ؔ܎਺ ⇢ij = ij i j • ڞ෼ࢄΛແ࣍ݩԽͨ͠ͷ͕૬ؔ܎਺ • ਖ਼ͷ૬͕ؔ͋Ε͹ +ɺෛͷ૬͕ؔ͋Ε͹ - • ඞͣ [-1, 1] ΛͱΔ

Slide 21

Slide 21 text

૬ؔ܎਺͸ઢܗ૬͔ؔ͠ΩϟονͰ͖ͳ͍ • x = [-2, -1, 0, 1, 2], y = x^2 ͷͱ͖
 ૬ؔ܎਺ ρ_xy ͸θϩ https://upload.wikimedia.org/wikipedia/commons/d/d4/Correlation_examples2.svg

Slide 22

Slide 22 text

ϕΫτϧతͳղऍ • N ݸͷଌఆ͕͋Δͱ͖ɺ ij = 1 N N X n=1 ( xni µi)( xnj µj) = 1 N N X n=1 dnidnj = 1 N di · dj di = ( x1i µi, x2i µi, . . . , xNi µi)T = ( d1i, d2i, . . . , dNi)T ͱ͓͘ͱɺڞ෼ࢄ͸಺ੵʢͷఆ਺ഒʣʹͳΔ ϕΫτϧۭؒͱͯ͠
 ѻ͏ͨΊʹ͸
 ֤ಛ௃ྔͰ୯Ґ͕
 ἧ͍ͬͯΔඞཁ͕͋Δ

Slide 23

Slide 23 text

2 i = 1 N di · di = 1 N |di |2 i = = 1 p N |di | ϕΫτϧతͳղऍ ⇢ij = ij i j = (1 /N ) di · dj (1 / p N ) |di | (1 / p N ) |dj | = di · dj |di | |dj | = cos ✓ij

Slide 24

Slide 24 text

ϕΫτϧతͳղऍ • ׬શͳਖ਼ͷ૬͕ؔ͋Δͱ͖ ⇢ij = 1 cos ✓ij = 1 ✓ij = 0 di = cdj ( c > 0)

Slide 25

Slide 25 text

ϕΫτϧతͳղऍ di dj ⇢ij = 1 ⇢ij = 0 ⇢ij = 1 di dj di dj { } p N i p N j

Slide 26

Slide 26 text

؍ଌσʔλͷඪ४Խ

Slide 27

Slide 27 text

• ಛ௃ؒͷ૬ؔΛͳ͍ͨ͘͠ • ୯Ґ͕ҧ͍ͬͯͯ΋౷ܭతʹൺֱ͍ͨ͠ ➡ ؍ଌσʔλΛม׵͠Α͏ʂ ॏ͞ [g] ௚ܘ [μm] ൒ܘ [μm] … ϥϕϧ 4.801 22601 11301 … ਅ 4.751 22599 11300 … آ 4.799 22602 11301 … ਅ … … … … … Πϯτϩʢ࠶๚ʣ

Slide 28

Slide 28 text

ฏۉɾ෼ࢄͱઢܗม׵ • ઢܗม׵Λߟ͑Δ y = ax + b E { y } = E { ax + b } = a E { x } + b = aµ + b • ฏۉͱ෼ࢄ͸ҎԼͷΑ͏ʹԠ౴ Var { y } = E ( y Ey )2 = E [ ax + b ( aµ + b )]2 = E a 2( x µ )2 = a 2E ( x µ )2 = a 2Var { x } = a 2 2

Slide 29

Slide 29 text

ඪ४Խ • ҎԼͷઢܗม׵Λ࢖͏ͱ
 ฏۉ 0 ɺ෼ࢄ 1 ͷಛ௃ྔ͕ಘΒΕΔ z = x µ E { z } = E ⇢ x µ = 1 (E { x } µ ) = 0 Var { z } = Var ⇢ x µ = 1 2 Var { x } = 1

Slide 30

Slide 30 text

ඪ४Խ x1 x2

Slide 31

Slide 31 text

ඪ४Խ x1 x2

Slide 32

Slide 32 text

ඪ४Խ x1 x2

Slide 33

Slide 33 text

ඪ४Խ x1 x2 µ1 µ2

Slide 34

Slide 34 text

ඪ४Խ x1 x2 µ1 µ2 1 2

Slide 35

Slide 35 text

ඪ४Խ x1 x2 µ1 µ2 1 2 1 z1 z2 1

Slide 36

Slide 36 text

ඪ४Խ x1 x2 µ1 µ2 1 2 1 z1 z2 1 • σʔλͷฏۉΛ 0 ɺ෼ࢄʢඪ४ภࠩʣΛ 1 ʹ • ແ࣍ݩԽ͞Ε͍ͯΔͷͰɺ୯Ґͷҧ͍΋ٵऩͰ͖Δ

Slide 37

Slide 37 text

؍ଌσʔλͷແ૬ؔԽ

Slide 38

Slide 38 text

ݻ༗ϕΫτϧ • ڞ෼ࢄߦྻͷݻ༗஋໰୊Λղ͘ͱ
 d ຊͷϕΫτϧ͕ಘΒΕΔ • ڞ෼ࢄߦྻ͸ [d, d] ͷରশߦྻ ⌃si = isi

Slide 39

Slide 39 text

ݻ༗ϕΫτϧ • ରশߦྻʹରͯ͠ɿ • ݻ༗஋͸࣮਺ • ݻ༗ϕΫτϧ͸௚ަ ➡ ݻ༗ϕΫτϧ͸ਖ਼ن௚ަجఈ sT i sj = ij = ⇢ 1 (i = j) 0 (i 6= j)

Slide 40

Slide 40 text

ճసߦྻ • ݻ༗ϕΫτϧΛฒ΂ͯߦྻΛ࡞Δ • ਖ਼ن௚ަجఈΛฒ΂ͨߦྻ͸௚ަߦྻͱͳΔ S = (s1, s2, . . . , sd) (ST S)ij = sT i sj = ij ) ST S = I ) ST = S 1 • ͜ͷ৔߹͸ճసߦྻʢ㱬௚ަߦྻʣͱͳΔ

Slide 41

Slide 41 text

ແ૬ؔԽ y = ST x E { y } = E ST x = ST E { x } = ST µ Var { y } = E ( y E { y })( y E { y })T = E (ST x ST µ )(ST x ST µ )T = E ST ( x µ )[ST ( x µ )]T = E ST ( x µ )( x µ )T S = ST E ( x µ )( x µ )T S = ST ⌃S

Slide 42

Slide 42 text

ແ૬ؔԽ S 1⌃S = S 1⌃(s1, s2, . . . , sd) = S 1( 1s1, 2s2, . . . , dsd) = S 1S 0 B B B @ 1 0 . . . 0 0 2 . . . 0 . . . ... . . . 0 0 . . . d 1 C C C A = 0 B B B @ 1 0 . . . 0 0 2 . . . 0 . . . ... . . . 0 0 . . . d 1 C C C A = ⇤ • ͳͷͰɺແ૬ؔԽ͞Ε͍ͯΔ • ແ૬͕ؔͩɺඪ४Խ͸͞Ε͍ͯͳ͍ (Var {y})ij = 0 (i 6= j) (Var {y})ii = i

Slide 43

Slide 43 text

ന৭Խ

Slide 44

Slide 44 text

ന৭Խ • ඪ४Խʴແ૬ؔԽ u = ⇤ 1/2ST ( x µ ) (⇤ 1/2)ij = ⇢ 1/ p i (i = j) 0 (i 6= j)

Slide 45

Slide 45 text

ന৭Խ E { u } = E n⇤ 1/2ST ( x µ )o = ⇤ 1/2ST (E { x } µ ) = 0 Var { u } = E n⇤ 1/2ST ( x µ )( x µ )T S(⇤ 1/2)T o = ⇤ 1/2ST E ( x µ )( x µ )T S(⇤ 1/2)T = ⇤ 1/2ST ⌃S(⇤ 1/2)T = ⇤ 1/2⇤(⇤ 1/2)T = I • ඪ४Խ͞Εɺ͔ͭແ૬ؔԽ͞Εͨʂ

Slide 46

Slide 46 text

4.1 ͷ·ͱΊ • ඪ४Խ • ୯ҐΛͦΖ͑ɺฏۉΛ 0 ɺ෼ࢄΛ 1 ʹ͢Δ • ແ૬ؔԽ • ૬͕ؔͳ͘ͳΔΑ͏ʹۭؒΛճసͤ͞Δ • ඪ४Խ͸͞Εͯͳ͍ • ന৭Խ • ඪ४Խ ʴ ແ૬ؔԽ • ୯ҐΛͦΖ͑ɺฏۉΛ 0 ɺ෼ࢄΛ 1 ʹ͠ɺ
 ૬͕ؔͳ͘ͳΔΑ͏ʹۭؒΛճసͤ͞Δ

Slide 47

Slide 47 text

4 ষͷ΋͘͡ 4. ֬཰Ϟσϧͱࣝผؔ਺ 1. ؍ଌσʔλͷઢܗม׵ 2. ֬཰Ϟσϧ 3. ֬཰Ϟσϧύϥϝʔλͷ࠷໬ਪఆ

Slide 48

Slide 48 text

֬཰Ϟσϧ • σʔλͷ෼෍ͷ਺ཧϞσϧ • ύϥϝτϦοΫϞσϧ • ෼෍ؔ਺ΛԾఆ͠ɺύϥϝʔλΛܾఆͯ͠
 ϞσϧԽ͢Δ • ϊϯύϥϝτϦοΫϞσϧ • ಛఆͷ෼෍ΛԾఆͤͣɺσʔλͦͷ΋ͷ͔Β
 ෼෍ͷදݱΛಘΔ

Slide 49

Slide 49 text

֬཰Ϟσϧ͋Ε͜Ε • ύϥϝτϦοΫϞσϧ • ֬཰ม਺͕཭ࢄʢ֬཰࣭ྔؔ਺ʣ • ೋ߲෼෍ɺଟ߲෼෍ɺϙΞιϯ෼෍ͳͲ • ֬཰ม਺͕࿈ଓʢ֬཰ີ౓ؔ਺ʣ • ਖ਼ن෼෍ɺΧΠೋ৐෼෍ɺίʔγʔ෼෍ͳͲ • ϊϯύϥϝτϦοΫϞσϧ • ώετάϥϜ๏ɺkNN ๏ɺύϧπΣϯີ౓ਪఆ๏ ͳͲ

Slide 50

Slide 50 text

ਖ਼ن෼෍ؔ਺

Slide 51

Slide 51 text

ਖ਼ن෼෍ͷੑ࣭ʢൈਮʣ • ղੳతʹΑ͘ௐ΂ΒΕ͍ͯΔ • ඇਖ਼ن෼෍ʹ͕ͨ͠͏σʔλ΋
 ඪຊฏۉͷ෼෍͸ਖ਼ن෼෍ʹͳΔʢத৺ۃݶఆཧʣ • ਖ਼ن෼෍ʹ͕ͨ͠͏σʔλͷઢܗม׵͸
 ਖ਼ن෼෍ʹ͕ͨ͠͏ • ਖ਼ن෼෍ʹ͕ͨ͠͏ෳ਺ͷ֬཰ม਺ͷઢܗ݁߹͸
 ਖ਼ن෼෍ͱ͍͏ʢ࠶ੜੑʣ • ແ૬ؔͰ͋Δ͜ͱͱ౷ܭతʹಠཱͰ͋Δ͜ͱ͕౳Ձ
 ʢʮਖ਼ن෼෍ʹݶΓʯͷ෦෼ˠ ʮ਺ֶηϛφʔʯʹࡌͬͯΔ͔΋ʁʣ

Slide 52

Slide 52 text

ਖ਼ن෼෍ • 1 ࣍ݩਖ਼ن෼෍ N(x | µ, 2 ) = 1 p 2⇡ 2 exp  (x µ) 2 2 2 • ଟ࣍ݩਖ਼ن෼෍ N (x | µ , ⌃) = 1 (2 ⇡ ) d/2 | ⌃ |1/2 exp  1 2 (x µ) T ⌃ 1 (x µ)

Slide 53

Slide 53 text

ਖ਼ن෼෍ • ૬ؔͷ෼͚ͩճస͠ɺඪ४ภࠩͷ෼͚ͩҾ͖৳͹͞Ε͍ͯΔ • ന৭Խͷٯ ( x µ )T ⌃ 1( x µ ) = ( x µ )T [S⇤S 1] 1( x µ ) = ( x µ )T S⇤ 1S( x µ ) = [ST ( x µ )]T ⇤ 1[ST ( x µ )] = y T ⇤ 1 y (* y ⌘ ST ( x µ )) = y T (⇤1/2)T ⇤1/2 y = (⇤1/2 y )T (⇤1/2 y ) = z T z (* z ⌘ ⇤ 1/2 y )

Slide 54

Slide 54 text

ϚϋϥϊϏεڑ཭ • ෼෍ͷத৺͔ΒͲΕ͚ͩ཭Ε͍ͯΔ͔ͷࢦඪ • ന৭Խۭͨؒ͠Ͱͷڑ཭ d( x , µ ) = q ( x µ )T ⌃ 1( x µ ) = p z T z

Slide 55

Slide 55 text

ਖ਼ن෼෍͔Βಋ͔ΕΔ
 ࣝผؔ਺

Slide 56

Slide 56 text

Ϋϥε৚݅෇͖֬཰ • Ϋϥε৚݅෇͖֬཰͕ਖ਼ن෼෍Ͱ͋ΔͱԾఆ͢Δ ln P ( Ci | x) = p (x |Ci) P ( Ci) p (x) / p (x |Ci) P ( Ci) = P ( Ci) (2 ⇡ ) d/2 | ⌃i |1/2 exp  1 2 (x µi) T ⌃ 1 i (x µi) p (x |Ci) = 1 (2 ⇡ ) d/2 | ⌃i |1/2 exp  1 2 (x µi) T ⌃ 1 i (x µi)

Slide 57

Slide 57 text

Ϋϥε৚݅෇͖֬཰ • ؔ܎ͳ͍߲ΛΦϛοτɺ ×(-2) ln P(Ci | x ) = ln P(Ci) d 2 ln(2⇡) 1 2 ln |⌃i |1/2 1 2 ( x µi)T ⌃ 1 i ( x µi) gi( x ) = ( x µi)T ⌃ 1 i ( x µi) + ln |⌃i | 2 ln P(Ci) [Recognized class] = arg min i [ gi(x)]

Slide 58

Slide 58 text

ࣝผڥք • Ϋϥεؒͷڥ໨ʢࣝผڥքʣ͸ҎԼͷํఔࣜͰ
 ༩͑ΒΕΔ fij( x ) = gi( x ) gj( x ) = 0

Slide 59

Slide 59 text

ࣝผڥք fij( x ) = gi( x ) gj( x ) = ( x µi)T ⌃ 1 i ( x µi) + ln |⌃i | 2 ln P(Ci) ( x µj)T ⌃ 1 j ( x µj) ln |⌃j | + 2 ln P(Cj) = x ⌃ 1 i x x ⌃ 1 i µi µi⌃ 1 i x + µi⌃ 1 i µi x ⌃ 1 j x x ⌃ 1 j µj µj⌃ 1 j x + µj⌃ 1 j µj + ln |⌃i | ⌃j 2 ln P(Ci) P(Cj) = x (⌃ 1 i ⌃ 1 j ) x + 2( µ T j ⌃ 1 j µ T i ⌃ 1 i ) x + µT i ⌃ 1 i µiµT j ⌃ 1 j µj + ln |⌃i | ⌃j 2 ln P(Ci) P(Cj) ) x T S x + 2 c T x + F = 0 ʢ2 ࣍ࣝผؔ਺ʣ +µT i ⌃ 1 i µi µT j ⌃ 1 j µj + ln |⌃i | |⌃j | 2 ln P(Ci) P(Cj) fij( x ) = gi( x ) gj( x ) = ( x µi)T ⌃ 1 i ( x µi) + ln |⌃i | 2 ln P(Ci) ( x µj)T ⌃ 1 j ( x µj) ln |⌃j | + 2 ln P(Cj) = x ⌃ 1 i x x ⌃ 1 i µi µi⌃ 1 i x + µi⌃ 1 i µi x ⌃ 1 j x x ⌃ 1 j µj µj⌃ 1 j x + µj⌃ 1 j µj + ln |⌃i | ⌃j 2 ln P(Ci) P(Cj) = x (⌃ 1 i ⌃ 1 j ) x + 2( µ T j ⌃ 1 j µ T i ⌃ 1 i ) x + µT i ⌃ 1 i µiµT j ⌃ 1 j µj + ln |⌃i | ⌃j 2 ln P(Ci) P(Cj) x ⌃ 1 j x + x ⌃ 1 j µj + µj⌃ 1 j x µj⌃ 1 j µj

Slide 60

Slide 60 text

ࣝผڥքʢิ୊ʣ x T i ⌃ 1 i µi = (Scalar) = (x T i ⌃ 1 i µi) T = µ T i (⌃ 1 i ) T x = µ T i ⌃ 1 i x ( * ⌃ 1 i is a symmetric matrix) • ରশߦྻͷٯߦྻ͸ରশߦྻͰ͋Δ͜ͱʹ஫ҙ

Slide 61

Slide 61 text

ࣝผڥք • ;ͨͭͷΫϥεͷڞ෼ࢄߦྻ͕౳͍͠ͱ͖ fij( x ) = 2 c T x + F = 0 ʢઢܗࣝผؔ਺ʣ

Slide 62

Slide 62 text

ࣝผڥք ⌃i = ⌃j = I P(Ci) = P(Cj) • ͔ͭ ͷͱ͖ fij( x ) = 2( µ T j ⌃ 1 j µ T j ⌃ 1 i ) x + µ T i ⌃ 1 i µi µ T i ⌃ 1 i µi = 2 ( µ T j µ T i ) x + µ T i µi µ T j µj = 0 x T x + 2 µ T i x + µ T i µi x T x + 2 µ T j x µ T j µj = 0 ( x µi)T ( x µi) ( x µj)T ( x µj) = 0 ) ( x µi)T ( x µi) = ( x µj)T ( x µj) x T x 2 µ T i x + µ T i µi x T x + 2 µ T j x µ T j µj = 0 • ྆ล σ ͰׂΓɺ x^T x Λ଍͠Ҿ͖ ʢ࠷ۙ๣๏……ͱຊʹ͸ॻ͍ͯ͋Δ͕ઢܗ൑ผ෼ੳʢLDAʣͰ͸ʁ ʢฏۉ͔Βͷڑ཭Λൺ΂͍ͯΔͷͰʣʣ +µT i ⌃ 1 i µi µT j ⌃ 1 j µj fij( x ) = 2( µ T j ⌃ 1 j µ T j ⌃ 1 i ) x + µ T i ⌃ 1 i µi µ T i ⌃ 1 i µi = 2 ( µ T j µ T i ) x + µ T i µi µ T j µj = 0

Slide 63

Slide 63 text

ࣝผڥք µi µj

Slide 64

Slide 64 text

ࣝผڥք ܾఆڥք µi µj

Slide 65

Slide 65 text

ࣝผڥք ܾఆڥք µi µj µk

Slide 66

Slide 66 text

ࣝผڥք ܾఆڥք µi µj µk

Slide 67

Slide 67 text

ࣝผڥք ܾఆڥք cf. ϘϩϊΠਤ µi µj µk

Slide 68

Slide 68 text

4.2 ͷ·ͱΊ • ਖ਼ن෼෍͸͍Ζ͍Ζੑ࣭͕͍͍ • ଟ࣍ݩਖ਼ن෼෍͸
 ૬ؔɾ෼ࢄʹΑΔճసɾऩॖ͕ߟྀ͞Ε͍ͯΔࣜ • 2 Ϋϥεؒͷࣄޙ֬཰͕౳͘͠ͳΔ఺ͷي੻͸
 ࣝผڥքΛ༩͑Δ

Slide 69

Slide 69 text

4 ষͷ΋͘͡ 4. ֬཰Ϟσϧͱࣝผؔ਺ 1. ؍ଌσʔλͷઢܗม׵ 2. ֬཰Ϟσϧ 3. ֬཰Ϟσϧύϥϝʔλͷ࠷໬ਪఆ

Slide 70

Slide 70 text

ಠཱಉ෼෍ͱಉ࣌෼෍ • ಉҰͷʢਅͷʣ෼෍͔Βಠཱʹαϯϓϧ͞Εͨ΋ͷΛ
 i.i.d. ʢಠཱಉ෼෍: independently and identically distributedʣඪຊ
 ͱ͍͏ • i.i.d. ͷͱ͖ɺ N ݸͷαϯϓϧͷಉ࣌෼෍͸ҎԼɿ f( x1, x2, . . . , xN | ✓ ) = N Y i=1 f( xi | ✓ )

Slide 71

Slide 71 text

࠷໬ਪఆ๏ • ࣮༻্͸σʔλ͕༩͑ΒΕ͍ͯͯύϥϝʔλ͕ະ஌ • ύϥϝʔλΛม਺ͱͯ͠ಉ࣌෼෍ΛͱΒ͑Δ L( ✓ ) = f( x1, x2, . . . , xN | ✓ ) ʢ໬౓ؔ਺ʣ • ໬౓ؔ਺Λ࠷େʹ͢ΔύϥϝʔλΛٻΊΔ
 ʢ࠷໬ਪఆ๏ʣ • ର਺Λͱͬͯ΋ۃ஋ͷҐஔ͸มΘΒͳ͍ͷͰ
 ໬౓ؔ਺ͷର਺ΛͱͬͯܭࢉΛ؆୯ʹͰ͖Δ͜ͱ͕͋Δ

Slide 72

Slide 72 text

1 ม਺ਖ਼ن෼෍ͷ৔߹ L(µ, 2 ) = f(x1, x2, . . . , xN | µ, 2 ) = N Y i=1 1 p 2⇡ 2 exp  (xi µ) 2 2 2 = (2⇡ 2 ) N/2 exp " 1 2 2 N X i=1 (xi µ) 2 # Lln( µ, 2) = N 2 ln(2 ⇡ ) N 2 ln 2 1 2 2 N X i=1 ( xi µ )2

Slide 73

Slide 73 text

1 ม਺ਖ਼ن෼෍ͷ৔߹ Lln( µ, 2) = N 2 ln(2 ⇡ ) N 2 ln 2 1 2 2 N X i=1 ( xi µ )2 • ର਺໬౓Λ֤ύϥϝʔλͰภඍ෼ͯ͠ۃ஋ΛٻΊΔ

Slide 74

Slide 74 text

1 ม਺ਖ਼ن෼෍ͷ৔߹ @Lln(ˆ µ, 2) @µ = @ @µ " 1 2 2 N X i=1 ( xi µ )2 # µ=ˆ µ = 0 1 2 2 N X i=1 2( xi ˆ µ )( 1) = 0 N X i=1 xi N X i=1 ˆ µ = 0 ) ˆ µ = 1 N N X i=1 xi

Slide 75

Slide 75 text

1 ม਺ਖ਼ن෼෍ͷ৔߹ @Lln( µ, ˆ2) @ 2 = @ @ 2 " N 2 ln 2 1 2 2 N X i=1 ( xi µ )2 # 2=ˆ2 = 0 N 2 1 ˆ2 1 2 1 (ˆ2)2 ( 1) N X i=1 ( xi µ )2 = 0 N ˆ2 + 1 (ˆ2)2 N X i=1 ( xi µ )2 = 0 ) ˆ2 = 1 N N X i=1 ( xi µ )2

Slide 76

Slide 76 text

4.3 ͷ·ͱΊ • ໬౓ؔ਺ʢͷର਺ʣΛύϥϝʔλͰภඍ෼ͯ͠
 ໬౓͕࠷େͷͱ͜ΖΛٻΊΔ