Slide 1

Slide 1 text

Predicting the future of publishing Arfon Smith @arfon Creative Commons Attribution 3.0 Unported License

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

No content

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

!

Slide 8

Slide 8 text

No content

Slide 9

Slide 9 text

No content

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

No content

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

4,000,000 8,000,000 12,000,000 16,000,000 20,000,000 2007 2008 2009 2010 2011 2012 2013 2014 Repositories

Slide 16

Slide 16 text

0 3,000,000 6,000,000 9,000,000 2007 2008 2009 2010 2011 2012 2013 2014 Users

Slide 17

Slide 17 text

not doing this

Slide 18

Slide 18 text

Software & Data Services

Slide 19

Slide 19 text

Three assumptions

Slide 20

Slide 20 text

1. Open is the new normal

Slide 21

Slide 21 text

2. The PDF is an increasingly unsatisfactory way of sharing research

Slide 22

Slide 22 text

3. We are generally unprepared to share data and software in a useful (and creditable) way

Slide 23

Slide 23 text

Software & Data Services

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

No content

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

No content

Slide 28

Slide 28 text

BIG SCIENCE

Slide 29

Slide 29 text

New tools. New ways of working.

Slide 30

Slide 30 text

New tools. New ways of publishing.

Slide 31

Slide 31 text

Reproducibility Data intensive

Slide 32

Slide 32 text

Complex (unpublished) things Numbers, data Science!

Slide 33

Slide 33 text

Should academia behave more like open source?

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

Verification & benchmarking services Likely thing #1:

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

No content

Slide 40

Slide 40 text

No content

Slide 41

Slide 41 text

No content

Slide 42

Slide 42 text

No content

Slide 43

Slide 43 text

No content

Slide 44

Slide 44 text

No content

Slide 45

Slide 45 text

No content

Slide 46

Slide 46 text

No content

Slide 47

Slide 47 text

No content

Slide 48

Slide 48 text

No content

Slide 49

Slide 49 text

No content

Slide 50

Slide 50 text

No content

Slide 51

Slide 51 text

Software is an unforgiving medium

Slide 52

Slide 52 text

Automating processes

Slide 53

Slide 53 text

“open source is… reproducible by necessity” Fernando Perez http://blog.fperez.org/2013/11/an-ambitious-experiment-in-data-science.html

Slide 54

Slide 54 text

Benchmarking services

Slide 55

Slide 55 text

No content

Slide 56

Slide 56 text

No content

Slide 57

Slide 57 text

No content

Slide 58

Slide 58 text

No content

Slide 59

Slide 59 text

No content

Slide 60

Slide 60 text

No content

Slide 61

Slide 61 text

No content

Slide 62

Slide 62 text

No content

Slide 63

Slide 63 text

No content

Slide 64

Slide 64 text

Most innovation around shared challenges/data products Likely thing #2:

Slide 65

Slide 65 text

10 ? n Level 1 (continual) Level 2 (periodic)

Slide 66

Slide 66 text

Software composed of many components

Slide 67

Slide 67 text

Your software is the thing that is different

Slide 68

Slide 68 text

Open Source: Ubiquitous culture of reuse

Slide 69

Slide 69 text

Ecosystem around data products

Slide 70

Slide 70 text

Stars Rocks SN WR NEOs Josh Bloom’s Type Ia supernovae Level 1 (continual) 10 n

Slide 71

Slide 71 text

No content

Slide 72

Slide 72 text

No content

Slide 73

Slide 73 text

No content

Slide 74

Slide 74 text

‘Normal’ citations won’t be sufficient for software Likely thing #3:

Slide 75

Slide 75 text

“Academic environments of today do not reward tool builders” Ed Lazowska, OSTP event http://lazowska.cs.washington.edu/MS/MS.OSTP.pdf

Slide 76

Slide 76 text

No content

Slide 77

Slide 77 text

No content

Slide 78

Slide 78 text

No content

Slide 79

Slide 79 text

“publishing a paper about code is basically just advertising” David Donoho http://www.stanford.edu/~vcs/Video.html

Slide 80

Slide 80 text

Transitive Credit

Slide 81

Slide 81 text

Paper Author 1 Author 2 Paper Software Data 0.2 0.2 0.4 0.1 0.1 Paper Software Software Author 1 0.5 0.3 0.1 0.1 http://arxiv.org/abs/1407.5117, Katz & Smith

Slide 82

Slide 82 text

Authorship isn’t static

Slide 83

Slide 83 text

No content

Slide 84

Slide 84 text

No content

Slide 85

Slide 85 text

No content

Slide 86

Slide 86 text

No content

Slide 87

Slide 87 text

No content

Slide 88

Slide 88 text

No content

Slide 89

Slide 89 text

No content

Slide 90

Slide 90 text

No content

Slide 91

Slide 91 text

Where does progress come first?

Slide 92

Slide 92 text

Where do communities form?

Slide 93

Slide 93 text

Around a shared challenge?

Slide 94

Slide 94 text

Around shared data?

Slide 95

Slide 95 text

Be more exact

Slide 96

Slide 96 text

Where peers can most easily recognise value

Slide 97

Slide 97 text

Open source has solved much of what academia needs

Slide 98

Slide 98 text

The challenge is to adapt and evolve the academy in this new collaborative age

Slide 99

Slide 99 text

Thanks. [email protected] @arfon "