Slide 1

Slide 1 text

Dr Jonathan Skelton Department of Chemistry, University of Manchester ([email protected]) Computational modelling, structural dynamics and vibrational entropy

Slide 2

Slide 2 text

Structural dynamics in solids Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 2

Slide 3

Slide 3 text

Structural dynamics in solids Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 3

Slide 4

Slide 4 text

Statistical thermodynamics At finite temperature, thermal energy is partitioned over phonon modes πœ† through to the vibrational partition function 𝑍vib (𝑇): 𝐴 𝑇 = π‘ˆlatt + 𝐴vib 𝑇 The phonons contribute to the constant-volume (Helmholtz) free energy 𝐴(𝑇) through the bridge relation: Adding 𝐴vib 𝑇 to the lattice energy π‘ˆlatt gives us a model for the temperature- dependent free energy 𝐴(𝑇): 𝐴vib 𝑇 = π‘˜B 𝑇 ln 𝑍vib (𝑇) 𝑍vib 𝑇 = ΰ·‘ πœ† exp Ξ€ βˆ’β„πœ”πœ† 2π‘˜B 𝑇 1 βˆ’ exp Ξ€ βˆ’β„πœ”πœ† π‘˜B 𝑇 𝐴 𝑇 = π‘ˆlatt + π‘ˆvib 𝑇 βˆ’ 𝑇𝑆vib 𝑇 Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 4

Slide 5

Slide 5 text

Phase stability: sulfamerazine A. R. Pallipurath et al., Mol. Pharmaceutics 12 (10), 3735 (2015) Form-1 Form-2 Form-3 Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 5

Slide 6

Slide 6 text

Phase stability: sulfamerazine A. R. Pallipurath et al., Mol. Pharmaceutics 12 (10), 3735 (2015) Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 6

Slide 7

Slide 7 text

Phase stability: sulfamerazine A. R. Pallipurath et al., Mol. Pharmaceutics 12 (10), 3735 (2015) 𝑇 = 293 K Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 7

Slide 8

Slide 8 text

Phase stability: SnS Pnma Rocksalt πœ‹-cubic SnS2 Sn2 S3 Cmcm Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 8

Slide 9

Slide 9 text

Phase stability: SnS J. M. Skelton et al., J. Phys. Chem. C 121 (12), 6446 (2017) Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 9

Slide 10

Slide 10 text

Dynamic disorder: soft modes I. Pallikara and J. M. Skelton, ChemRxiv preprint - DOI: 10.26434/chemrxiv.14187689 Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 10

Slide 11

Slide 11 text

Dynamic disorder: soft modes Low 𝑇: Pnma High 𝑇: Cmcm (Average structure) I. Pallikara and J. M. Skelton, ChemRxiv preprint - DOI: 10.26434/chemrxiv.14187689 Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 11

Slide 12

Slide 12 text

Dynamic disorder II: MAPbI3 A. N. Beecher et al., ACS Energy Lett. 1 (4), 880 (2016) Orthorhombic (𝑇 < 165 K) Tetragonal (𝑇 =165-327 K) Cubic (𝑇 > 327 K) Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 12

Slide 13

Slide 13 text

Dynamic disorder II: MAPbI3 L. D. Whalley et al., Phys. Rev. B 94, 220301(R) (2016) c-MAPbI3 Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 13

Slide 14

Slide 14 text

Dynamic disorder II: MAPbI3 A. N. Beecher et al., ACS Energy Lett. 1 (4), 880 (2016) Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 14

Slide 15

Slide 15 text

Statistical thermodynamics II Using the harmonic approximation, we can calculate the Helmholtz free energy 𝐴(𝑇): It we also take into account the volume dependence of π‘ˆlatt and the phonon frequencies, we can calculate the Gibbs free energy 𝐺(𝑇) (the quasi-harmonic approximation): (𝐺 is arguably a more experimentally-relevant quantity, and we can also explore the effect of pressure through the 𝑝𝑉 term.) 𝐴(𝑇) = π‘ˆlatt + π‘ˆvib (𝑇) βˆ’ 𝑇𝑆vib (𝑇) 𝐺(𝑇) = min 𝑉 𝐴(𝑇; 𝑉) + 𝑝𝑉 𝐺(𝑇) = min 𝑉 π‘ˆlatt (𝑉) + π‘ˆvib (𝑇; 𝑉) βˆ’ 𝑇𝑆vib (𝑇; 𝑉) + 𝑝𝑉 Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 15

Slide 16

Slide 16 text

The SnSe phase diagram Average: Cmcm Local: Cmcm Average: Cmcm Local: Pnma Average: Cmcm Local: ??? I. Pallikara and J. M. Skelton, ChemRxiv preprint - DOI: 10.26434/chemrxiv.14187689 Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 16

Slide 17

Slide 17 text

Pnma Sn(S1-x Sex ) alloys J. M. Skelton, J. Phys.: Energy 2 (2), 025006 (2020) π‘ˆlatt 𝐴vib Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 17

Slide 18

Slide 18 text

Summary The theory of lattice dynamics describe the natural thermal motion of atoms in crystalline solids (phonons) Phonons contribute to the temperature-dependent Helmholtz free energy through the vibrational partition function The 𝐴(𝑇) - most importantly the 𝑆vib (𝑇) term - can have an important impact on the relative stability of different material phases at finite 𝑇 Materials with imaginary harmonic modes in their dispersion are expected to show a divergence between the local (short-range) and average (long-range) structure Using the quasi-harmonic approximation, we can model 𝐺(𝑇) and study pressure effects Recent work has shown that the vibrational free energy can skew an alloy phase diagram away from ideality Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 18

Slide 19

Slide 19 text

Acknowledgements Dr Jonathan Skelton | 2021 BCA Spring Meeting | Slide 19

Slide 20

Slide 20 text

These slides are available on Speaker Deck: http://bit.ly/2OVggoZ