Machine Learning
Zero to Hero in GCP
Victoria Ubaldo
@Vikyale
Slide 2
Slide 2 text
Victoria Ubaldo
Data Analyst Management @Interbank
Women Techmakers Lima Ambassador
@vikyale
Slide 3
Slide 3 text
¿Qué vamos a hablar?
● Introducción a ML
● Cómo empezar con ML
● Tecnologías que emplean para ML
● ML & Google Cloud
● Consejos y tips
Slide 4
Slide 4 text
Introducción a ML
Slide 5
Slide 5 text
No content
Slide 6
Slide 6 text
La inteligencia artificial (Artificial Intelligence, o AI) es la simulación de
procesos de inteligencia humana por parte de máquinas, especialmente
sistemas informáticos. Estos procesos incluyen el aprendizaje (la
adquisición de información y reglas para el uso de la información), el
razonamiento (usando las reglas para llegar a conclusiones aproximadas
o definitivas) y la autocorrección.
Slide 7
Slide 7 text
Machine Learning
is
programming
with data.
Slide 8
Slide 8 text
No content
Slide 9
Slide 9 text
No content
Slide 10
Slide 10 text
Empowering
computer
systems with
the ability to
“learn”.
Slide 11
Slide 11 text
tech
sport
business
politics
entertainment
Slide 12
Slide 12 text
DATA:
UK mobile owners continue
to break records with their text
messaging, with latest figures
showing that 26 billion texts
were sent in total in 2004.
?
Prediction
Model
tech
sport
business
politics
entertainment
Slide 13
Slide 13 text
7 Steps of Machine Learning
1. Gathering Data
2. Preparing that Data
3. Choosing a Model
4. Training
5. Evaluation
6. Hyperparameter Tuning
7. Prediction
Regresión es predecir un valor,
una casa más cercana a un
centro comercial y vías
principales, regresa un valor en
precio más grande, ejemplo
1,000,000
Clasificación es predecir una
categoría, se regresa las “clases”
o categorías a buscar y en base a
eso nos regresa si es “opción 1” o
“opción 2”.
Slide 18
Slide 18 text
No content
Slide 19
Slide 19 text
Cómo empezar con ML
Slide 20
Slide 20 text
No content
Slide 21
Slide 21 text
GDG Google Cloud
¿Por qué cloud?
● Flexibilidad
● Pago por uso
● Escalabilidad
● Alta disponibilidad
● Administración
● Seguridad
● Ubicuidad,
localización
Slide 22
Slide 22 text
GDG Google Cloud
¿Por qué cloud?
● Flexibilidad
● Pago por uso
● Escalabilidad
● Alta disponibilidad
● Administración
● Seguridad
● Ubicuidad,
localización
Slide 23
Slide 23 text
La nube no es
más que externalizar tu
arquitectura y
su administración
Slide 24
Slide 24 text
How Can You Get Started with Machine Learning?
Three ways, with varying complexity:
(1) Use a Cloud-based or Mobile API (Vision, Natural Language,
etc.)
(2) Use an existing model architecture, and retrain it or fine tune
on your dataset
(3) Develop your own machine learning models for new
problems
More
flexible,
but more
effort
required
Slide 25
Slide 25 text
Tecnologías a emplear
Slide 26
Slide 26 text
1. Gathering Data
Often overlooked, always undervalued
'," "
))) as text
FROM `bigquery-public-data.bbc_news.fulltext`
ORDER BY RAND()
Gathering data from BigQuery
Slide 30
Slide 30 text
Gathering data
Slide 31
Slide 31 text
2. Preparing that Data
Can take a bit longer than expected
Slide 32
Slide 32 text
Our “data” isn’t very organized...
Slide 33
Slide 33 text
coach
oscar
wednesday
oil
gadgets
animals
Building a bag of words model: a simple example
Vocabulary Possible labels
tech
sport
business
politics
entertainment
animals
measures
europe
theatre
lawyer
cats
Slide 34
Slide 34 text
coach
oscar
wednesday
oil
gadgets
animals
Building a bag of words model: a simple example
Vocabulary
animals
electronics
europe
theatre
lawyer
cats
Inputs
gadgets on show at the 2005
consumer electronics show
Slide 35
Slide 35 text
coach
oscar
wednesday
oil
gadgets
animals
Building a bag of words model: a simple example
Vocabulary
animals
electronic
s
europe
theatre
lawyer
cats
Inputs
gadgets on show at the 2005
consumer electronics show
[ 0 0 0 0 1 0 0 1 0 0 0 0 ]
Slide 36
Slide 36 text
Building a bag of words model: a simple example
Labels
tech
sport
business
politics
entertainment
[ 0 1 0 0 0 ]
Slide 37
Slide 37 text
Building a bag of words model: a simple example
Labels
tech
sport
business
politics
entertainment
[ 0.01 0.92 0.03 0.02 0.01 ]
Slide 38
Slide 38 text
Building a bag of words model: a simple example
Labels
tech
sport
business
politics
entertainment
[ 0.03 0.02 0.04 0.88 0.03 ]
Slide 39
Slide 39 text
3. Choosing a Model
Everyone's favorite conversation topic
Slide 40
Slide 40 text
No content
Slide 41
Slide 41 text
● Open source Machine
Learning library
● Especially useful for
Deep Learning
● For research and
production
● Apache 2.0 license
Slide 42
Slide 42 text
Hello World
Image from https://github.com/mnielsen/neural-networks-and-deep-learning
?
Slide 43
Slide 43 text
What we see What the computer “sees”
Slide 44
Slide 44 text
A multidimensional array.
A graph of operations.
3
+
2
5
Slide 45
Slide 45 text
Android iOS ...
GPU
CPU
TensorFlow Distributed Execution Engine
...
C++ Frontend
Python Frontend
Slide 46
Slide 46 text
Android iOS ...
GPU
CPU
TensorFlow Distributed Execution Engine
...
C++ Frontend
Python Frontend
Layers Build models
Slide 47
Slide 47 text
Android iOS ...
GPU
CPU
TensorFlow Distributed Execution Engine
...
C++ Frontend
Python Frontend
Layers
Estimator
Keras
Model
Train and evaluate models
Build models
Slide 48
Slide 48 text
No content
Slide 49
Slide 49 text
4. Training
Surely machine learning is more than this
Slide 50
Slide 50 text
Test and
update
model
Training Data
Model Prediction
Slide 51
Slide 51 text
5. Evaluation
Always good to check your work
Slide 52
Slide 52 text
Evaluation Data
Prediction
Model
Calculate
accuracy
Slide 53
Slide 53 text
6. Hyperparameter Tuning
Adjusting model parameters
Slide 54
Slide 54 text
Training Data
Prediction
Model
Model
Model
Model
Test and
update
model
Slide 55
Slide 55 text
7. Prediction
The reason we did all that work
Slide 56
Slide 56 text
DATA:
UK mobile owners continue
to break records with their text
messaging, with latest figures
showing that 26 billion texts
were sent in total in 2004.
Prediction
Model
tech
Slide 57
Slide 57 text
ML y Google Cloud
Slide 58
Slide 58 text
Cloud Machine Learning Engine
No-ops distributed TF training
Efficient, parallelized,
hyperparameter search
Serve TensorFlow, XGBoost,
and scikit-learn models in
production
Slide 59
Slide 59 text
Cloud Machine Learning APIs
See, Hear and Understand the world
Slide 60
Slide 60 text
Cloud
Natural Language
Cloud
Speech
Cloud
Translate
Cloud
Vision
Slide 61
Slide 61 text
Faces
Faces, facial landmarks, emotions
OCR
Read and extract text, with
support for > 10 languages
Label
Detect entities from furniture to
transportation
Logos
Identify product logos
Landmarks & Image Properties
Detect landmarks & dominant
color of image
Safe Search
Detect explicit content - adult,
violent, medical and spoof
Cloud Vision API
Slide 62
Slide 62 text
API Usage: Detect Objects in an Image
Image Detected
Items
Vision API
Create JSON
request with the
image or pointer
to an image
Process
the JSON
response
Call the
REST API
1 2 3
Slide 63
Slide 63 text
Confidential & Proprietary
Google Cloud Platform 63
Cloud Natural Language API
Extract sentence, identify parts of
speech and create dependency parse
trees for each sentence.
Identify entities and label by types such
as person, organization, location, events,
products and media.
Understand the overall sentiment of a
block of text.
Syntax Analysis Entity Recognition
Sentiment Analysis
Slide 64
Slide 64 text
Mobile Vision API
Providing on-device vision for applications
Slide 65
Slide 65 text
Face API
faces, facial landmarks, eyes
open, smiling
Barcode API
1D and 2D barcodes
Text API
Latin-based text / structure
Common Mobile Vision API
Support for fast image and video on-device detection and tracking.
NEW!
Slide 66
Slide 66 text
Text Detection
Latin based language
Understand text structure
Photo credit Getty Images
Slide 67
Slide 67 text
Text Structure
Blocks
Lines
Words
Lines
Words Words Words
Slide 68
Slide 68 text
Barcode Detection
1D barcodes
EAN-13/8
UPC-A/E
Code-39/93/128
ITF
Codabar
2D barcodes
QR Code
Data Matrix
PDF-417
AZTEC
UPC
DataMatrix
QR Code
PDF 417
Video and image credit Google
Slide 69
Slide 69 text
Combined Vision & Translation
Slide 70
Slide 70 text
¿Por dónde empezar?
Slide 71
Slide 71 text
GDG Google Cloud
¡Por dónde empezar!
12 meses
300 $ de crédito gratis para que empieces a utilizar cualquier producto de
Google Cloud Platform.
Always Free
Límites de uso gratuito en los productos que participan en la promoción
para los clientes que cumplen los requisitos (durante la prueba gratuita y
cuando finalice). La oferta está sujeta a cambios.
Slide 72
Slide 72 text
GDG Google Cloud
¡Por dónde empezar!
Slide 73
Slide 73 text
7 Steps of Machine Learning
1. Gathering Data
2. Preparing that Data
3. Choosing a Model
4. Training
5. Evaluation
6. Hyperparameter Tuning
7. Prediction