Slide 1

Slide 1 text

Brandon Bukowski, N. Aaron Deskins Worcester Polytechnic Institute Worcester, MA

Slide 2

Slide 2 text

Brief Intro to Photocatalyis _ Valence Band Conduction Band e- hν h+ Œ photoexcitation  charge diffusion, trapping, and recombination Ž molecular adsorption and reaction + TiO2 Nanoparticle H+ Photocatalytic Process Overview R R’ C O O O C R R’ O2 O2 R· O O C R’ •  Water/air treatment - Photocatalytic organic oxidation •  Water splitting

Slide 3

Slide 3 text

TiO2 /Graphene Heterostructures Graphene TiO2

Slide 4

Slide 4 text

State of the Field Various Density Functional Theory Results Available Graphene à Rutile Electron Transfer •  Du, Y.H. Ng, N.J. Bell, Z. Zhu, R. Amal, S.C. Smith J. Phys. Chem. Lett. 2 (2011) 894–899. •  R. Long, N.J. English, O. V Prezhdo, J. Am. Chem. Soc. 134 (2012) 14238– 48. Anatase à Graphene Electron Transfer •  H. Gao, X. Li, J. Lv, G. Liu, J. Phys. Chem. C. 117 (2013) 16022–16027. Graphene à Anatase Electron Transfer •  X. Li, H. Gao, G. Liu, Comput. Theor. Chem. 1025 (2013) 30–34. •  Y. Masuda, G. Giorgi, K. Yamashita, Phys. Status Solidi. 251 (2014) 1471– 1479. TiO2 Gap States Improve Photoexcitation •  N. Yang, Y. Liu, H. Wen, Z. Tang, H. Zhao, Y. Li, et al, ACS Nano. 7 (2013) 1504–12. Graphene + small TiO2 Pristine Graphene + TiO2

Slide 5

Slide 5 text

Non-Uniform Graphene/Relevance of Defects reduced graphene oxide Graphite oxidation à separation à reduction (thermal, chemical) Reality: Defect + oxygen containing groups S. Pei, H.-M. Cheng, Carbon 50 (2012) 3210–3228.

Slide 6

Slide 6 text

Graphene/TiO2 Models (TiO2 )n Clusters •  N= 1 to 8 from Qu and Kroes, The Journal of Physical Chemistry B, 2006, 110, 8998-9007. •  N= 15 from Hamad et al. The Journal of Physical Chemistry B, 2005, 109, 15741-15748. (6x6) surface a – Pristine graphene b – Graphene with C vacancy c – Graphene with epoxide d – Graphene with hydroxyl

Slide 7

Slide 7 text

TiO2 over Pristine Graphene Surface/Cluster Distances 2.4 to 2.9 Å Previous DFT Results for n = 1 -0.8 eV1 -1.22 eV2 -1.27 eV3 -1.55 eV4 1 M. Favaro, S. Agnoli, C. Di Valentin, C. Mattevi, M. Cattelan, L. Artiglia, E. Magnano, F. Bondino, S. Nappini and G. Granozzi, Carbon, 2014, 68, 319-329. 2 S. Ayissi, P. A. Charpentier, N. Farhangi, J. A. Wood, K. Palotás and W. A. Hofer, The Journal of Physical Chemistry C, 2013, 117, 25424-25432. 3 E. H. Song and Y. F. Zhu, Nanoscience and Nanotechnology Letters, 2013, 5, 198-203. 4 M. I. Rojas and E. P. M. Leiva, Physical Review B, 2007, 76, 155415. 1 eV = 96.5 kJ/mol

Slide 8

Slide 8 text

What binds TiO2 to graphene? TiO2 binding – no site preference! van der Waals forces play key role in binding TiO2 1 eV = 96.5 kJ/mol

Slide 9

Slide 9 text

What about defects/functional groups? Adsorption Energies in eV C Vacancy Epoxide Hydroxyl 1 eV = 96.5 kJ/mol

Slide 10

Slide 10 text

Charge Density Difference Plots Pure Graphene Graphene With Vacancy Graphene With Epoxide Graphene With Hydroxyl

Slide 11

Slide 11 text

Electronic Interactions between Graphene and TiO2 – Band Gaps

Slide 12

Slide 12 text

Electronic Transitions between Graphene and TiO2 Conduction Band Valence Band TiO2 Pure Graphene light 1 2 3 1 2 3

Slide 13

Slide 13 text

Defects Affect Transitions Pure Graphene: graphene à TiO2 C Vacancy: graphene ßà TiO2 Epoxide: graphene ß TiO2 Hydroxyl: graphene ß TiO2

Slide 14

Slide 14 text

Summary of the work •  Realistic graphene surfaces and high-level molecular model •  Pure Graphene-TiO2 interactions dominated by van der Waals forces •  Graphene defects can serve as binding/anchor sites for TiO2 •  Defects can affect electronic transitions between graphene-TiO2 Graphene TiO2 Defect Phys. Chem. Chem. Phys., 2015, Advance Article, DOI: 10.1039/C5CP04073F

Slide 15

Slide 15 text

Acknowledgments/Co-Authors Brandon Bukowski We wish to thank: Sia Najafi, WPI, for Computer Support Environmental Molecular Science Laboratory (EMSL) at Pacific Northwest National Laboratory in Richland, WA for providing computational resources. EMSL is a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

Slide 16

Slide 16 text

Computational Method-Density Functional Theory ¨ CP2K for Geometry Optimization ¨ Gamma-point k- point sampling ¨ Dual Basis Set - Gaussian and Plane wave (GPW) Method ¨ GGA (PBE) Exchange Correlation Functional ¨ van der Waals corrections – method of Grimme ¨ VASP for single- point electronic structure ¨ 4x4x1 kpt mesh ¨ Plane Wave Basis ¨ DFT+U to correct self-interaction errors ¨ Density of states, electronic charge

Slide 17

Slide 17 text

Calculated Bader Charges Surface Type Cluster Size (n) Pristine graphene Graphene with C vacancy Graphene with epoxide Graphene with hydroxyl 1 -0.03 -0.11 -0.90 -0.43 3 -0.14 -0.02 -1.17 -0.83 5 -0.08 -0.23 -1.32 -0.63 8 -0.07 -0.15 -1.29 -0.86 15 -0.27 -0.56 -1.29 -0.80 ! C Vacancy Epoxide Hydroxyl 1 eV = 96.5 kJ/mol