Slide 1

Slide 1 text

Holly Cummins Senior Principal Software Engineer, Quarkus Voxxed Days Zurich March 7, 2024 @[email protected] faster greener happier why quarkus should be your next tech stack

Slide 2

Slide 2 text

@holly_cummins #RedHat

Slide 3

Slide 3 text

@holly_cummins #RedHat

Slide 4

Slide 4 text

@holly_cummins #RedHat software test cycle

Slide 5

Slide 5 text

@holly_cummins #RedHat software test cycle

Slide 6

Slide 6 text

@holly_cummins #RedHat software test cycle

Slide 7

Slide 7 text

@holly_cummins #RedHat software test cycle

Slide 8

Slide 8 text

@holly_cummins #RedHat software test cycle

Slide 9

Slide 9 text

@holly_cummins #RedHat software test cycle

Slide 10

Slide 10 text

@holly_cummins #RedHat software test cycle

Slide 11

Slide 11 text

@holly_cummins #RedHat software test cycle

Slide 12

Slide 12 text

@holly_cummins #RedHat software test cycle

Slide 13

Slide 13 text

@holly_cummins #RedHat

Slide 14

Slide 14 text

@holly_cummins #RedHat the problem:

Slide 15

Slide 15 text

@holly_cummins #RedHat tea: slow feedback loop→developers drink a lot of tea the problem:

Slide 16

Slide 16 text

@holly_cummins #RedHat 2010s-era java web frameworks are verbose there is a lot of typing

Slide 17

Slide 17 text

@holly_cummins #RedHat tea: slow feedback loop→developers drink a lot of tea the problems:

Slide 18

Slide 18 text

@holly_cummins #RedHat tea: slow feedback loop→developers drink a lot of tea the problems: typing: verbose programming model → repetitive boilerplate

Slide 19

Slide 19 text

@holly_cummins #RedHat tea: slow feedback loop→developers drink a lot of tea the problems: typing: verbose programming model → repetitive boilerplate tedium

Slide 20

Slide 20 text

@holly_cummins #RedHat

Slide 21

Slide 21 text

@holly_cummins #RedHat “I can’t bring up the microservices in my Java dev stack

Slide 22

Slide 22 text

@holly_cummins #RedHat “I can’t bring up the microservices in my Java dev stack … on my brand new Apple laptop with a M1 chip and 64GB of RAM.” - fintech CTO

Slide 23

Slide 23 text

@holly_cummins #RedHat in production, it’s worse

Slide 24

Slide 24 text

@holly_cummins #RedHat in production, it’s worse

Slide 25

Slide 25 text

@holly_cummins #RedHat in production, it’s worse example microservices maths:

Slide 26

Slide 26 text

@holly_cummins #RedHat in production, it’s worse example microservices maths: airline maintenance scheduling system

Slide 27

Slide 27 text

@holly_cummins #RedHat in production, it’s worse example microservices maths: airline maintenance scheduling system single service: ½ core + 1 GB RAM

Slide 28

Slide 28 text

@holly_cummins #RedHat in production, it’s worse example microservices maths: airline maintenance scheduling system single service: ½ core + 1 GB RAM HA → 3x instances

Slide 29

Slide 29 text

@holly_cummins #RedHat in production, it’s worse example microservices maths: airline maintenance scheduling system single service: ½ core + 1 GB RAM HA → 3x instances ~100 microservices

Slide 30

Slide 30 text

@holly_cummins #RedHat in production, it’s worse example microservices maths: airline maintenance scheduling system single service: ½ core + 1 GB RAM HA → 3x instances ~100 microservices = 150 cores + 300 GB RAM

Slide 31

Slide 31 text

@holly_cummins #RedHat java was not designed for the cloud

Slide 32

Slide 32 text

@holly_cummins #RedHat Container platform machine go go go go go go go go go go go go go go

Slide 33

Slide 33 text

@holly_cummins #RedHat Container platform machine node.js node.js node.js node.js node.js node.js node.js machine go go go go go go go go go go go go go go

Slide 34

Slide 34 text

@holly_cummins #RedHat Container platform machine HotSpot Heap HotSpot Heap HotSpot Heap HotSpot Heap machine node.js node.js node.js node.js node.js node.js node.js machine go go go go go go go go go go go go go go

Slide 35

Slide 35 text

@holly_cummins #RedHat all this resource usage is expensive

Slide 36

Slide 36 text

@holly_cummins #RedHat tea: slow feedback loop→developers drink a lot of tea the problems: typing: verbose programming model → repetitive boilerplate

Slide 37

Slide 37 text

@holly_cummins #RedHat tea: slow feedback loop→developers drink a lot of tea the problems: typing: verbose programming model → repetitive boilerplate treasure: high resource usage → cloud vendors get lots of money

Slide 38

Slide 38 text

@holly_cummins #RedHat why is this happening? mismatch between what we need and what the platform is optimised for

Slide 39

Slide 39 text

@holly_cummins #RedHat what old frameworks were optimised for

Slide 40

Slide 40 text

@holly_cummins #RedHat on-prem what old frameworks were optimised for

Slide 41

Slide 41 text

@holly_cummins #RedHat on-prem dedicated hardware what old frameworks were optimised for

Slide 42

Slide 42 text

@holly_cummins #RedHat on-prem dedicated hardware long-lived processes what old frameworks were optimised for

Slide 43

Slide 43 text

@holly_cummins #RedHat on-prem dedicated hardware long-lived processes deployment is an annual event what old frameworks were optimised for

Slide 44

Slide 44 text

@holly_cummins #RedHat on-prem dedicated hardware long-lived processes deployment is an annual event late-binding what old frameworks were optimised for

Slide 45

Slide 45 text

@holly_cummins #RedHat on-prem dedicated hardware long-lived processes deployment is an annual event late-binding re-configurable without restart what old frameworks were optimised for

Slide 46

Slide 46 text

can we do better than that?

Slide 47

Slide 47 text

No content

Slide 48

Slide 48 text

enter … quarkus

Slide 49

Slide 49 text

@holly_cummins #RedHat traditional cloud-native java stack traditional cloud-native java stack traditional cloud-native java stack traditional cloud-native java stack node.js node.js node.js node.js node.js node.js node.js go go machine go go go go go go go go go go go go go go go go go go go quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus spoiler: we made stuff better :) container orchestration machine machine machine https:/ /developers.redhat.com/blog/2017/03/14/java-inside-docker/

Slide 50

Slide 50 text

@holly_cummins #RedHat machine quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus container orchestration machine traditional cloud-native java stack traditional cloud-native java stack traditional cloud-native java stack traditional cloud-native java stack … a lot better quarkus native

Slide 51

Slide 51 text

@holly_cummins #RedHat machine quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus quarkus container orchestration machine traditional cloud-native java stack traditional cloud-native java stack traditional cloud-native java stack traditional cloud-native java stack … a lot better quarkus native (but quarkus on jvm is also way smaller than traditional java)

Slide 52

Slide 52 text

@holly_cummins #RedHat in the cloud, apps get started and stopped often

Slide 53

Slide 53 text

@holly_cummins #RedHat in the cloud, apps get started and stopped often

Slide 54

Slide 54 text

@holly_cummins #RedHat java servers are not very much like light switches

Slide 55

Slide 55 text

@holly_cummins #RedHat java servers are not very much like light switches

Slide 56

Slide 56 text

@holly_cummins #RedHat java servers are not very much like light switches (historically)

Slide 57

Slide 57 text

quarkus applications start fast quarkus + graalvm 0.014 Seconds rest application quarkus + open jdk 0.75 Seconds traditional cloud-native stack 4.3 Seconds https://quarkus.io/blog/runtime-performance/

Slide 58

Slide 58 text

@holly_cummins to the code! demo!

Slide 59

Slide 59 text

@holly_cummins #RedHat mvn quarkus:build -Pnative target/code-with-quarkus-1.0.0-SNAPSHOT-runner

Slide 60

Slide 60 text

faster than a lightbulb

Slide 61

Slide 61 text

ok but does startup time matter?

Slide 62

Slide 62 text

ok but does startup time matter? fast boot time means auto-scaling works better more resilience to load spikes

Slide 63

Slide 63 text

quarkus + GraalVM 13 MB quarkus + OpenJDK 74 MB Traditional Cloud-Native Stack 140 MB rest application https://quarkus.io/blog/runtime-performance/ quarkus improves memory utilization

Slide 64

Slide 64 text

#Quarkus @holly_cummins

Slide 65

Slide 65 text

#Quarkus @holly_cummins hey, wanna see quarkus? hey, wanna see quarkus? hey, wanna see quarkus? hey, wanna see quarkus? hey, wanna see quarkus?

Slide 66

Slide 66 text

#Quarkus @holly_cummins hey, wanna see quarkus? hey, wanna see quarkus? hey, wanna see quarkus? hey, wanna see quarkus? hey, wanna see quarkus? uhh … are you supposed to shut down applications after using them?

Slide 67

Slide 67 text

#Quarkus @holly_cummins hey, wanna see quarkus? hey, wanna see quarkus? hey, wanna see quarkus? hey, wanna see quarkus? hey, wanna see quarkus? uhh … are you supposed to shut down applications after using them? 120 instances (!)

Slide 68

Slide 68 text

ok but does memory footprint matter?

Slide 69

Slide 69 text

ok but does memory footprint matter? in the cloud, memory footprint is money

Slide 70

Slide 70 text

@holly_cummins #RedHat remember the airline scheduling application?

Slide 71

Slide 71 text

@holly_cummins #RedHat remember the airline scheduling application? “[With Quarkus], we can run 3 times denser deployments without sacrificing availability and response times of services. ” – Fawaz Thorsten Pohl

Slide 72

Slide 72 text

quarkus applications also have higher throughput https://www.redhat.com/en/resources/mi-quarkus-lab-validation-idc-analyst-paper

Slide 73

Slide 73 text

quarkus applications also have higher throughput 48 concurrent connections https://www.redhat.com/en/resources/mi-quarkus-lab-validation-idc-analyst-paper

Slide 74

Slide 74 text

quarkus applications also have higher throughput 48 concurrent connections quarkus native 3212 req/s https://www.redhat.com/en/resources/mi-quarkus-lab-validation-idc-analyst-paper

Slide 75

Slide 75 text

quarkus applications also have higher throughput 48 concurrent connections traditional cloud native stack 3555 req/s quarkus native 3212 req/s https://www.redhat.com/en/resources/mi-quarkus-lab-validation-idc-analyst-paper

Slide 76

Slide 76 text

quarkus applications also have higher throughput 48 concurrent connections traditional cloud native stack 3555 req/s quarkus on jvm 6389 req/s quarkus native 3212 req/s https://www.redhat.com/en/resources/mi-quarkus-lab-validation-idc-analyst-paper

Slide 77

Slide 77 text

@holly_cummins #RedHat https://medium.com/arconsis/spring-boot-vs-quarkus-part-2-jvm-runtime-performance-af45d0db116e

Slide 78

Slide 78 text

@holly_cummins #RedHat https://medium.com/arconsis/spring-boot-vs-quarkus-part-2-jvm-runtime-performance-af45d0db116e spring boot quarkus response time 1901 ms 294 ms throughput 523 req/s 3374 req/s

Slide 79

Slide 79 text

#Quarkus @holly_cummins users care (a lot) about response time

Slide 80

Slide 80 text

better startup better footprint better throughput wait, isn’t that something for nothing?

Slide 81

Slide 81 text

@holly_cummins #RedHat the two ways of improving performance •trade off one thing against another •eliminate waste

Slide 82

Slide 82 text

traditional cloud native stack 3555 req/s quarkus on jvm 6389 req/s quarkus native 3212 req/s https://www.redhat.com/en/resources/mi-quarkus-lab-validation-idc-analyst-paper

Slide 83

Slide 83 text

traditional cloud native stack 3555 req/s quarkus on jvm 6389 req/s quarkus native 3212 req/s https://www.redhat.com/en/resources/mi-quarkus-lab-validation-idc-analyst-paper a trade-off of throughput against footprint

Slide 84

Slide 84 text

traditional cloud native stack 3555 req/s quarkus on jvm 6389 req/s quarkus native 3212 req/s https://www.redhat.com/en/resources/mi-quarkus-lab-validation-idc-analyst-paper no trade-off, just better :) a trade-off of throughput against footprint

Slide 85

Slide 85 text

@holly_cummins #RedHat where the win comes from

Slide 86

Slide 86 text

@holly_cummins #RedHat application frameworks were optimised for dynamism

Slide 87

Slide 87 text

@holly_cummins #RedHat application frameworks optimised for dynamism dynamism has a cost

Slide 88

Slide 88 text

@holly_cummins #RedHat paying a dynamism tax … even though the app is not dynamic

Slide 89

Slide 89 text

@holly_cummins #RedHat cloud apps are immutable now

Slide 90

Slide 90 text

@holly_cummins #RedHat cloud apps are immutable now

Slide 91

Slide 91 text

@holly_cummins #RedHat cloud apps are immutable now

Slide 92

Slide 92 text

@holly_cummins #RedHat cloud apps are immutable now

Slide 93

Slide 93 text

@holly_cummins #RedHat cloud apps are immutable now

Slide 94

Slide 94 text

@holly_cummins #RedHat cloud apps are immutable now

Slide 95

Slide 95 text

@holly_cummins #RedHat a highly dynamic runtime in a container is pointless

Slide 96

Slide 96 text

@holly_cummins #RedHat a highly dynamic runtime in a container is pointless loading classes that aren’t needed

Slide 97

Slide 97 text

@holly_cummins #RedHat a highly dynamic runtime in a container is pointless loading classes that aren’t needed expensive, slow, reflection

Slide 98

Slide 98 text

@holly_cummins #RedHat a highly dynamic runtime in a container is pointless loading classes that aren’t needed expensive, slow, reflection the same initialisation on every startup

Slide 99

Slide 99 text

@holly_cummins #RedHat how does a java framework start?

Slide 100

Slide 100 text

@holly_cummins #RedHat how does a java framework start? build time

Slide 101

Slide 101 text

@holly_cummins #RedHat how does a java framework start? build time runtime

Slide 102

Slide 102 text

@holly_cummins #RedHat how does a java framework start? build time runtime

Slide 103

Slide 103 text

@holly_cummins #RedHat how does a java framework start? packaging (maven, gradle…) build time runtime

Slide 104

Slide 104 text

@holly_cummins #RedHat how does a java framework start? build time runtime

Slide 105

Slide 105 text

@holly_cummins #RedHat how does a java framework start? build time runtime

Slide 106

Slide 106 text

@holly_cummins #RedHat how does a java framework start? > build time runtime load and parse • config files • properties • yaml • xml • etc.

Slide 107

Slide 107 text

@holly_cummins #RedHat how does a java framework start? > build time runtime

Slide 108

Slide 108 text

@holly_cummins #RedHat how does a java framework start? @ @ > build time runtime • classpath scanning and annotation discovery • attempt to load class to enable/disable features

Slide 109

Slide 109 text

@holly_cummins #RedHat how does a java framework start? @ @ > build time runtime

Slide 110

Slide 110 text

@holly_cummins #RedHat how does a java framework start? @ @ > build time runtime build a metamodel of the world

Slide 111

Slide 111 text

@holly_cummins #RedHat how does a java framework start? @ @ > build time runtime

Slide 112

Slide 112 text

@holly_cummins #RedHat how does a java framework start? @ @ > build time runtime start • thread pools • I/O • etc.

Slide 113

Slide 113 text

@holly_cummins #RedHat how does a java framework start? @ @ > build time runtime ready to do work!

Slide 114

Slide 114 text

@holly_cummins #RedHat @ @ > build time runtime what if we initialize at build time?

Slide 115

Slide 115 text

@holly_cummins #RedHat @ @ > build time runtime what if we initialize at build time?

Slide 116

Slide 116 text

@holly_cummins #RedHat @ @ > build time runtime start • thread pools • I/O • etc. what if we initialize at build time?

Slide 117

Slide 117 text

@holly_cummins #RedHat @ @ > build time runtime ready to do work! start • thread pools • I/O • etc. what if we initialize at build time?

Slide 118

Slide 118 text

@holly_cummins #RedHat quarkus makes a “closed-world” assumption

Slide 119

Slide 119 text

@holly_cummins #RedHat the quarkus way enables native compilation native (graalvm) @ @ > jvm build time

Slide 120

Slide 120 text

@holly_cummins #RedHat the quarkus way enables native compilation native (graalvm) @ @ > jvm build time

Slide 121

Slide 121 text

ok but we don’t need native

Slide 122

Slide 122 text

ok but we don’t need native quarkus is faster and smaller than legacy frameworks, even running on the jvm

Slide 123

Slide 123 text

ok but is performance all there is?

Slide 124

Slide 124 text

ok but is performance all there is? developer joy

Slide 125

Slide 125 text

@holly_cummins #RedHat

Slide 126

Slide 126 text

doing more up-front enables better devex runtime build time @ @ >

Slide 127

Slide 127 text

doing more up-front enables better devex runtime build time we can do cool code introspections here that would be too expensive and annoying to do at runtime @ @ >

Slide 128

Slide 128 text

to the code! @holly_cummins #RedHat

Slide 129

Slide 129 text

ok but we don’t need reactive

Slide 130

Slide 130 text

ok but we don’t need reactive quarkus is good at reactive, but it’s also very good at normal programming

Slide 131

Slide 131 text

ok but we don’t need reactive quarkus is good at reactive, but it’s also very good at normal programming most quarkus users do not use reactive

Slide 132

Slide 132 text

@holly_cummins #RedHat mvn quarkus:dev zero-config live coding

Slide 133

Slide 133 text

@holly_cummins #RedHat tests are run on every code change “reverse code coverage” means only relevant tests run mvn quarkus:dev continuous testing

Slide 134

Slide 134 text

@holly_cummins #RedHat developer UI

Slide 135

Slide 135 text

@holly_cummins #RedHat zero-config testcontainers

Slide 136

Slide 136 text

@holly_cummins #RedHat testcontainers integration … without quarkus @TestConfiguration(proxyBeanMethods = false) public class ContainersConfig { @Bean @ServiceConnection public PostgreSQLContainer> postgres() { return new PostgreSQLContainer<>(DockerImageName.parse("postgres:14")); } } public class TestApplication { public static void main(String[] args) { SpringApplication .from(MySpringDataApplication::main) .with(ContainersConfig.class) .run(args); } } @Import(ContainersConfig.class)

Slide 137

Slide 137 text

@holly_cummins #RedHat testcontainers integration … without quarkus

Slide 138

Slide 138 text

@holly_cummins #RedHat zero-config testcontainers integration the only thing you need to do to make testcontainers work is not configure anything # configure your datasource quarkus.datasource.db-kind = postgresql quarkus.datasource.username = sarah quarkus.datasource.password = connor quarkus.datasource.jdbc.url = jdbc:postgresql://localhost:5432/mydatabase # drop and create the database at startup quarkus.hibernate-orm.database.generation = drop-and-create

Slide 139

Slide 139 text

@holly_cummins #RedHat zero-config testcontainers integration the only thing you need to do to make testcontainers work is not configure anything # drop and create the database at startup quarkus.hibernate-orm.database.generation = drop-and-create

Slide 140

Slide 140 text

@holly_cummins #RedHat zero-config testcontainers integration the only thing you need to do to make testcontainers work is not configure anything

Slide 141

Slide 141 text

@holly_cummins #RedHat zero-config testcontainers integration the only thing you need to do to make testcontainers work is not configure anything quarkus also auto-invokes flyway and liquibase

Slide 142

Slide 142 text

@holly_cummins #RedHat zero-config testcontainers integration realistically, use profiles so things work in production :) # configure your datasource %prod.quarkus.datasource.db-kind = postgresql %prod.quarkus.datasource.username = sarah %prod.quarkus.datasource.password = connor %prod.quarkus.datasource.jdbc.url = jdbc:postgresql://localhost:5432/mydatabase # on real databases, defaults to ‘none’, but let’s validate %prod.quarkus.hibernate-orm.database.generation = validate

Slide 143

Slide 143 text

@holly_cummins #RedHat • databases • redis • keycloak • kafka • elasticsearch • kubernetes • … or add your own auto-provision services “dev services” using testcontainers under the hood

Slide 144

Slide 144 text

@holly_cummins #RedHat more opinions, less boilerplate

Slide 145

Slide 145 text

@holly_cummins #RedHat package com.example; import org.jboss.logging.Logger; public class MyService { private static final Logger log = Logger.getLogger(MyService.class); public void doSomething() { log.info("It works!"); } } example: logging

Slide 146

Slide 146 text

@holly_cummins #RedHat package com.example; import org.jboss.logging.Logger; public class MyService { private static final Logger log = Logger.getLogger(MyService.class); public void doSomething() { log.info("It works!"); } } example: logging import io.quarkus.logging.Log; Log

Slide 147

Slide 147 text

@holly_cummins #RedHat example: query parameters public String hello(@QueryParam("name") String name) {

Slide 148

Slide 148 text

@holly_cummins #RedHat example: query parameters public String hello(@RestQuery String name) {

Slide 149

Slide 149 text

@holly_cummins #RedHat package org.acme; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; @SpringBootApplication public class SpringDemo { public static void main(String[] args) { SpringApplication.run(SpringDemo.class, args); } } example: declaring an application

Slide 150

Slide 150 text

@holly_cummins #RedHat example: declaring an application

Slide 151

Slide 151 text

@holly_cummins #RedHat @ApplicationScoped public class GreetingRepository { public Entity findByName(int name) { return find("name", name).firstResult(); } void persist(Entity entity) {} void delete(Entity entity) {} Entity findById(Id id) {} List list(String query, Sort sort, Object... params) { return null; } Stream stream(String query, Object... params) { return null; } long count() { return 0; } long count(String query, Object... params) { return 0; } } example: panache + hibernate

Slide 152

Slide 152 text

@holly_cummins #RedHat example: panache + hibernate @ApplicationScoped public class GreetingRepository implements PanacheRepository { public Entity findByName(int name) { return find("name", name).firstResult(); } }

Slide 153

Slide 153 text

@holly_cummins #RedHat DAO example: panache + hibernate @ApplicationScoped public class GreetingRepository implements PanacheRepository { public Entity findByName(int name) { return find("name", name).firstResult(); } } repository pattern

Slide 154

Slide 154 text

@holly_cummins #RedHat example: panache + hibernate

Slide 155

Slide 155 text

@holly_cummins #RedHat example: panache + hibernate active record pattern @Entity public class Greeting extends PanacheEntity { public String name; public LocalDate issued; @Version public int version; public static List getTodaysGreetings() { return list("date", LocalDate.now()); } }

Slide 156

Slide 156 text

@holly_cummins #RedHat int port = 8081; ClientInterceptor[] interceptors = new ClientInterceptor[3]; interceptors[0] = new EventLoopBlockingCheckInterceptor(); interceptors[1] = new IOThreadClientInterceptor(); interceptors[2] = new StorkMeasuringGrpcInterceptor(); // etc Channel channel = ManagedChannelBuilder .forAddress(“localhost", port) .usePlaintext() .build(); GreeterGrpc.GreeterStub greeter = GreeterGrpc .newStub(channel) .withInterceptors(interceptors); example: gRPC

Slide 157

Slide 157 text

@holly_cummins #RedHat example: gRPC @GrpcClient Greeter greeter;

Slide 158

Slide 158 text

@holly_cummins #RedHat ok but i don’t like magic

Slide 159

Slide 159 text

@holly_cummins #RedHat ok but i don’t like magic enrichment happens at build time

Slide 160

Slide 160 text

@holly_cummins #RedHat ok but i don’t like magic enrichment happens at build time no performance drag

Slide 161

Slide 161 text

@holly_cummins #RedHat ok but i still don’t like magic

Slide 162

Slide 162 text

@holly_cummins #RedHat the old ways all still work ok but i still don’t like magic

Slide 163

Slide 163 text

@holly_cummins #RedHat the old ways all still work but you don’t have to type all the stuff unless you want to ok but i still don’t like magic

Slide 164

Slide 164 text

@holly_cummins #RedHat io.quarkus quarkus-spring-web io.quarkus quarkus-spring-data-jpa ok but we use spring option 1: compatibility libraries option 2: migration tooling • migration toolkit for applications (mta) • windup • open rewrite

Slide 165

Slide 165 text

@holly_cummins #RedHat “After a week of development with quarkus, I was able to regain the same level of productivity as when I was developing with Spring Boot.” – Fawaz Paraïso, Decathlon

Slide 166

Slide 166 text

ok but we use kotlin

Slide 167

Slide 167 text

No content

Slide 168

Slide 168 text

No content

Slide 169

Slide 169 text

@holly_cummins #RedHat one last thing …

Slide 170

Slide 170 text

@holly_cummins #RedHat does being faster and lighter mean quarkus is greener?

Slide 171

Slide 171 text

digression: how do you measure carbon?

Slide 172

Slide 172 text

@holly_cummins #RedHat step 1: measure power usage

Slide 173

Slide 173 text

@holly_cummins #RedHat step 1: measure power usage wall power measurement

Slide 174

Slide 174 text

@holly_cummins #RedHat step 1: measure power usage wall power measurement RAPL

Slide 175

Slide 175 text

@holly_cummins #RedHat

Slide 176

Slide 176 text

@holly_cummins #RedHat

Slide 177

Slide 177 text

@holly_cummins #RedHat

Slide 178

Slide 178 text

@holly_cummins #RedHat load

Slide 179

Slide 179 text

@holly_cummins #RedHat Source: Teads EC2 instances carbon dataset

Slide 180

Slide 180 text

@holly_cummins #RedHat density Source: Clement Escoffier experiment 1: cloud Setup: • 800 requests/second, over 20 days • SLA > 99% • AWS instances Assumptions: • Costs are for us-east-1 data centre

Slide 181

Slide 181 text

@holly_cummins #RedHat Setup: • 800 requests/second, over 20 days • SLA > 99% Assumptions: Source: Clement Escoffier x Teads cloud carbon impact of framework choice interpolated carbon metrics

Slide 182

Slide 182 text

@holly_cummins #RedHat Setup: • 800 requests/second, over 20 days • SLA > 99% Assumptions: Source: Clement Escoffier x Teads cloud carbon impact of framework choice the carbon is lower because the cost is lower interpolated carbon metrics

Slide 183

Slide 183 text

@holly_cummins #RedHat Setup: • REST + CRUD • large heap • RAPL energy measurement • multiple instances to support high load
 Assumptions: • US energy mix Source: John O’Hara experiment 2: RAPL measurements

Slide 184

Slide 184 text

@holly_cummins #RedHat Setup: • REST + CRUD • large heap • RAPL energy measurement • multiple instances to support high load
 Assumptions: • US energy mix Source: John O’Hara experiment 2: RAPL measurements quarkus on JVM has the lowest carbon … because it has the highest throughput

Slide 185

Slide 185 text

• quarkus cuts carbon by ~2-3x* • native consumes more carbon than JVM carbon measurements: conclusions

Slide 186

Slide 186 text

@holly_cummins #RedHat another last thing …

Slide 187

Slide 187 text

@holly_cummins #RedHat open source community of contributors

Slide 188

Slide 188 text

@holly_cummins #RedHat Emiliia Nesterovych Emmanuel Bernard Emre Kaplan Enrique gonzález Martínez Enrique Mingorance Cano Eoin Gallinagh Eric Deandrea Eric Wittmann Erik Åsén Erik Mattheis Erin Schnabel Eugene Berman Evan Shortiss Fabricio Gregorio faculbsz Falko Modler Fedor Dudinskiy Felipe Carvalho dos Anjos Formentin Felipe Henrique Gross Windmoller Fernando Comunello Fernando Henrique fhavel Fikru Mengesha Filippe Spolti Florian Beutel Florian Bütler Florian Heubeck Florin Botis Foivos Zakkak Foobartender Fouad Almalki Francesco Nigro Francisco Javier Tirado Sarti Francois Steyn Frank Eichfelder franz1981 freakse-sa Fred Bricon Frédérc Blanc Freeman Fang Fu Cheng Gabriele Cardosi Galder Zamarreño galiacheng Gavin King Gavin Ray Geert Schuring Geoffrey De Smet Geoffrey GREBERT Georg Leber George Gastaldi manofthepeace Manyanda Chitimbo Marat Gubaidullin Marc Nuri Marc Schlegel Marc Wrobel Marcel Hanser Marcel Lohmann Marcell Cruz Marcelo Pereira Marcin Czeczko Marcin Kłopotek Marco Bungart Marco Schaub Marco Yeung Marco Zanghì Marcus Paulo Marek goldmann Marek Skacelik Marián Macik Mario Fusco MarioHNogueira Mark Lambert Mark Little Mark McLaughlin Mark Sailes marko-bekhta Markus Heberling Markus Himmel Markus Schwer Martin C. Richards Martin Grammelspacher Martin Kouba Martin Muzikar Martin Panzer Martin Weiler martin-kofoed-jyskebank-dk MartinWitt Marvin B. Lillehaug masini Matej Novotny Matej Vasek Matheus Cruz Mathias Holzer Matteo Mortari Matthias Andreas Benkard Matthias Cullmann mauroal Max Andersen Max Gabrielsson Max Rydahl Andersen Victor Hugo de Oliveira Molinar Vincent Sevel Vincent van Dam Vinícius Ferraz Campos Florentino Viswa Teja Nariboina Vladimir Konkov Vojtech Juranek Vratislav Hais w.glanzer Walter Medvedeo Wayne Ellis Werner Glanzer Willem Jan Glerum William Antônio Siqueira Wim goeman Wippermueller, Frank wojciech.stryjewski Xavier Xieshen xstefank Y. Luis Yann-Thomas LE MOIGNE Yannick Reifschneider YassinHajaj Yelzhas Suleimenov yesunch9 Yoann Rodière Yoshikazu Nojima Youngmin Koo Yubao Liu yugoccp Yukihiro Okada Zaheed Beita zanmagerl zedbeit Zheng Feng Žiga Deisinger Zineb Bendhiba zohar Zoran Regvart Шумов Игорь Юрьевич 出 门 三不惹 open source community of contributors

Slide 189

Slide 189 text

@holly_cummins #RedHat

Slide 190

Slide 190 text

@holly_cummins #RedHat tl;dpa (too long didn’t pay attention) deployment density lower cloud bill frictionless development experience Medium Nano auto-provision services zero-config live coding continuous testing developer UI greener

Slide 191

Slide 191 text

@holly_cummins #RedHat tl;sdpa (too long still didn’t pay attention) what problems is quarkus solving? tea typing tedium taxes treasure

Slide 192

Slide 192 text

slides Holly Cummins Red Hat http://hollycummins.com/greener-faster-happier-quarkus-voxxed-zurich/