Slide 42
Slide 42 text
Geometric pre-divergences 42
Fundamental structural equations for affine distributions:
Gauss equation: R(X, Y )Z = h(Y, Z)SX − h(X, Z)SY,
Codazzi equations:
(∇X
h)(Y, Z) + h(Y, Z)τ(X)
−(∇Y
h)(X, Z) + h(X, Z)τ(Y ) = −h(T ∇(X, Y ), Z),
(∇X
S)(Y ) + τ(Y )SX − (∇Y
S)(X) − τ(X)SY = −S(T ∇(X, Y )),
Ricci equation:
h(X, SY ) − (∇X
τ)(Y ) − h(Y, SX) + (∇Y
τ)(X) = τ(T ∇(X, Y )).
Proposition 5.4 (Haba (2020)) M : simply connected.
∇ : an affine connection, S : a (1, 1)-tensor field
h : a (0, 2)-tensor field, τ : a 1-form
∇, h, S and τ satisfy fundamental equations
=⇒ ∃{ω, ξ} : an affine distribution which induces ∇, h, S and τ.
Theorem 5.5 (Haba (2020))
(1) {ω, ξ} : nondegenerate, equiaffine
=⇒ (M, ∇, h) : 1-conformally partially flat quasi statistical manifold.
(2) {ω, ξ} : symmetric, nondegenerate, equiaffine
=⇒ (M, ∇, h) : 1-conformally partially flat SMAT.
If M is simply connected, the converses also hold