Slide 1

Slide 1 text

Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action Christian Weyer | Co-Founder & CTO | Thinktecture AG

Slide 2

Slide 2 text

§ Technology catalyst § AI-powered solutions § Pragmatic end-to-end architectures § Microsoft Regional Director § Microsoft MVP for Developer Technologies & Azure ASPInsider, AzureInsider § Google GDE for Web Technologies [email protected] @christianweyer https://www.thinktecture.com Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action Christian Weyer Co-Founder & CTO @ Thinktecture AG 2

Slide 3

Slide 3 text

The image part with relationship ID rId3 was not found in the file. The image part with relationship ID rId3 was not found in the file. Special Day Generative AI für Business-Anwendungen Thema Sprecher Datum, Uhrzeit Large Language Models: Szenarien, Use Cases & Patterns für Business- Anwendungen - in Action Christian Weyer DI, 17. September 2024, 10.45 bis 11.45 Real-World RAG: Eigene Daten & Dokumente mit semantischer Suche & LLMs erschließen Sebastian Gingter DI, 17. September 2024, 12.15 bis 13.15 Von 0 zu Smart: SPAs mit Generative AI aufwerten Max Marschall DI, 17. September 2024, 15.30 bis 16.30 Deep Dive in OpenAI Hosted Tools Rainer Stropek DI, 17. September 2024, 17.00 bis 18.00

Slide 4

Slide 4 text

Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action Our journey today 4 AI all-the- things? LLMs in your Solutions Talk to your Data Recap & Outlook Generative AI everywhere Talk to your Systems

Slide 5

Slide 5 text

Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action AI all-the-things? 5

Slide 6

Slide 6 text

Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action AI all-the-things? 6 Data Science Artificial Intelligence Machine Learning Unsupervised, supervised, reinforcement learning Deep Learning ANN, CNN, RNN etc. NLP (Natural Language Processing) Generative AI GAN, VAE, Transformers etc. Image / Video Generation GAN, VAE Large Language Models Transformers

Slide 7

Slide 7 text

§ LLMs generate text based on input § LLMs can understand text – this changes a lot § Without having to train them on domains or use cases § Prompts are the universal interface (“UI”) → unstructured text with semantics § Human language evolves as a first-class citizen in software architecture 🤯 Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action Large Language Models (LLMs) – like GPT powering ChatGPT 7

Slide 8

Slide 8 text

§ LLMs are programs § LLMs are highly specialized neural networks § LLMs use(d) lots of data § LLMs need a lot of resources to be operated § LLMs have an API to be used through Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action Large Language Models demystified 🔍 8

Slide 9

Slide 9 text

Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action LLMs in your Solutions 9

Slide 10

Slide 10 text

§ LLMs are always part of end-to-end architectures § Client apps (Web, desktop, mobile) § Services with APIs § Databases § etc. § An LLM is ‘just’ an additional asset in your architecture § Enabling human language understanding & generation § It is not the Holy Grail for everything Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action End-to-end architectures with LLMs 10 Clients Services LLMs Desktop Web Mobile Service A Service B Service C API Gateway Monitoring LLM 1 LLM 2

Slide 11

Slide 11 text

Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action Using LLMs: It’s just HTTP APIs Inference, FTW 11

Slide 12

Slide 12 text

GPT-4 API access OpenAI Playground Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action DEMO 12

Slide 13

Slide 13 text

Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action Generative AI everywhere 13

Slide 14

Slide 14 text

Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action LLMs everywhere OpenAI-related (cloud) OpenAI Azure OpenAI Service Big cloud providers Google Model Garden on Vertex AI Amazon Bedrock Edge 14 Other providers Anthropic Cohere Mistral AI Hugging Face Groq

Slide 15

Slide 15 text

§ Open-source community drives innovation in Generative AI § Llama- & Mistral-based families show big potential § Success factors § Use case § Parameter size § Quantization § Processing power needed § CPU optimization on its way Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action Open-weights LLMs thrive 15 § Local inference runtimes with APIs § E.g. llama.cpp, ollama, VLLM § Local UIs § E.g. Open WebUI

Slide 16

Slide 16 text

Local open-source models, APIs & UIs Ollama, Open WebUI Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action DEMO 16

Slide 17

Slide 17 text

Barebones SDKs § E.g. Open AI SDK § Available for any programming language § Basic abstraction over HTTP APIs § Lot of inference runtimes offer Open AI API compatible APIs § Also available from other providers § Mistral § Anthropic § Cohere § Ollama § Etc. Frameworks – e.g. LangChain, Semantic Kernel § Provide abstractions – typically for § Prompts & LLMs § Memory § Vector stores § Tools § Loading data from a wide range of sources Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action Building LLM-based end-to-end applications 17

Slide 18

Slide 18 text

Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action Talk to your Data 18

Slide 19

Slide 19 text

Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action Answering questions on data Retrieval-augmented generation (RAG) Cleanup & Split Text Embedding Question Text Embedding Save Query Relevant Text Question Answer LLM 19 Embedding model Embedding model 💡 Indexing / Embedding Question Answering Vector DB

Slide 20

Slide 20 text

RAG: Learning about company’s policies via Slack LangChain, Weaviate – GPT-4o Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action DEMO 20

Slide 21

Slide 21 text

Local RAG: Llama 3.1 open-source LLM llama.cpp, ollama, LangChain, StreamLit Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action DEMO 21

Slide 22

Slide 22 text

Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action Talk to your Systems 22

Slide 23

Slide 23 text

§ Write or speak your input → get structured data for your programs & systems § Clever & strict prompting § Schema description: Custom format, JSON, TypeScript types, etc. § Framework or tools support § Pydantic, Instructor, TypeChat, etc. § OpenAI Function / Tool Calling Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action 1. Extract structured data from textual information 23

Slide 24

Slide 24 text

Extracting structured data from text & voice: Form filling Data extraction prompt, OpenAI JS SDK, Angular Forms – Mixtral-8x7B on Groq Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action DEMO 24

Slide 25

Slide 25 text

§ Integrate LLM-external systems to aid LLMs § Tool / function calling standard established by OpenAI § LLM outputs JSON conforming to a schema § LLM does not call a function § All major libs support tool calling § OpenAI SDKs § LangChain § Semantic Kernel § etc. § You wire up the logic in your code Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action 2. Extending LLM capabilities 25 curl https://api.openai.com/v1/chat/completions \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "gpt-4o", "messages": [ { "role": "user", "content": "What is the weather like in Boston?" } ], "tools": [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"] } }, "required": ["location"] } } } ], "tool_choice": "auto" }'

Slide 26

Slide 26 text

Ask for experts availability in my company systems Angular, Speech-to-text, internal HTTP API, node.js OpenAI SDK + Tool Calling, Text-to-speech – GPT-4-turbo Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action DEMO 26

Slide 27

Slide 27 text

Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action Talking to internal APIs – Ask for expert’s availability 27 Angular PWA Open AI Speech-to-Text Internal Systems Gateway Open AI GPT-4 Open AI Text-to-Speech Transcribe spoken text Transcribed text Check for experts availability with text Extract { experts, booking times } from text Structured JSON data (Tool calling) Generate response with availability Response Response with experts availability 🗣 🔉 Speech-to-text for response Response audio Internal Company API Query Availability API Availability When is CL…? CL will be…

Slide 28

Slide 28 text

Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action Exciting Times 🫱 🫲 28

Slide 29

Slide 29 text

§ LLMs enable new scenarios & use cases to incorporate human language into software solutions § Fast moving and changing field § Every week something “big” happens in LLM space § Frameworks & ecosystem are evolving together with LLMs § Closed vs open LLMs § Competition drives invention & advancement § SLMs: specialized, fine-tuned for domains § Running local models in production is hard! § SISO (sh*t in, sh*t out) § Quality of results heavily depends on your data & input Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action Current state 29

Slide 30

Slide 30 text

Large Language Models Szenarien, Use Cases & Patterns für Business-Anwendungen - in Action The rise of SLMs & CPU inference 30

Slide 31

Slide 31 text

Thank you! Christian Weyer https://thinktecture.com/christian-weyer 31