Slide 1

Slide 1 text

Va1u3 Your TYPES! A !!Con West Adventure Eric Weinstein UC Santa Cruz, California, USA 24 February 2019

Slide 2

Slide 2 text

eric@testdouble.com

Slide 3

Slide 3 text

@ericqweinstein

Slide 4

Slide 4 text

@ericqweinstein

Slide 5

Slide 5 text

"queue"

Slide 6

Slide 6 text

Dependent Types! A type whose definition depends on a value "List of integers" is a type; "list of integers where each successive value is strictly larger than its predecessor" is a dependent type!

Slide 7

Slide 7 text

History! 1934: Haskell Curry notices similarities between the typed lambda calculus and propositional logic 1960s: William Howard and Nicolaas De Bruijn extend Curry’s work to predicate logic

Slide 8

Slide 8 text

History! Credit: https://manishearth.github.io/blog/2017/03/04/what-are-sum-product-and-pi-types/

Slide 9

Slide 9 text

History! Credit: https://manishearth.github.io/blog/2017/03/04/what-are-sum-product-and-pi-types/ ∀x: fn() → Array "For all x, we can construct this array!" ∃x: fn() → Array "There exists an x such that we can construct this array!"

Slide 10

Slide 10 text

History! 1934: Haskell Curry notices similarities between the typed lambda calculus and propositional logic 1960s: William Howard and Nicolaas De Bruijn extend Curry’s work to predicate logic

Slide 11

Slide 11 text

History! 1934: Haskell Curry notices similarities between the typed lambda calculus and propositional logic 1960s: William Howard and Nicolaas De Bruijn extend Curry’s work to predicate logic

Slide 12

Slide 12 text

The Curry-Howard Correspondence!

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

Idris! data Vect : Nat -> Type -> Type where Nil : Vect 0 a (::) : (x : a) -> (xs : Vect n a) -> Vect (n + 1) a Credit: https://en.wikipedia.org/wiki/Idris_(programming_language)#Dependent_types

Slide 15

Slide 15 text

Idris! data Vect : Nat -> Type -> Type where Nil : Vect Z a (::) : a -> Vect n a -> Vect (S n) a Credit: https://www.idris-lang.org/example/

Slide 16

Slide 16 text

Idris! total pairAdd : Num a => Vect n a -> Vect n a -> Vect n a pairAdd Nil Nil = Nil pairAdd (x :: xs) (y :: ys) = x + y :: pairAdd xs ys Credit: https://en.wikipedia.org/wiki/Idris_(programming_language)#Dependent_types

Slide 17

Slide 17 text

Idris! total append : Vect n a => Vect m a -> Vect (n + m) a append Nil ys = ys append (x :: xs) ys = x :: append xs ys Credit: https://en.wikipedia.org/wiki/Idris_(programming_language)#Dependent_types

Slide 18

Slide 18 text

Idris! total append : Vect n a => Vect m a -> Vect (n + m) a append Nil ys = ys append (x :: xs) ys = x :: append xs ys Credit: https://en.wikipedia.org/wiki/Idris_(programming_language)#Dependent_types

Slide 19

Slide 19 text

Idris! Credit: https://github.com/HoTT/book/issues/743

Slide 20

Slide 20 text

Aside! #

Slide 21

Slide 21 text

# Aside!

Slide 22

Slide 22 text

Aside! #

Slide 23

Slide 23 text

Aside!

Slide 24

Slide 24 text

Aside!

Slide 25

Slide 25 text

Aside!

Slide 26

Slide 26 text

∴ Aside!

Slide 27

Slide 27 text

? ? ? Aside!

Slide 28

Slide 28 text

Undecidable!

Slide 29

Slide 29 text

Credit: The Princess Bride (1987)

Slide 30

Slide 30 text

Undecidable! When types contain values, they become little programs... ...and general program equivalence is undecidable! !!

Slide 31

Slide 31 text

Undecidable! "At compile-time it will only evaluate things which it knows to be total (i.e. terminating and covering all possible inputs) in order to keep type checking decidable." !! Credit: https://docs.idris-lang.org/en/latest/faq/faq.html

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

Papers! http://www.cse.chalmers.se/~peterd/papers/ DependentTypesAtWork.pdf https://dl.acm.org/citation.cfm?id=671431 http://www.cis.upenn.edu/~plclub/lambda-eek/lambda-eek.pdf http://www.kb.ecei.tohoku.ac.jp/~terauchi/papers/popl10- depceg.pdf

Slide 34

Slide 34 text

TL;DPA Dependent types are amazing! Idris is an amazing language and you should try it!!

Slide 35

Slide 35 text

Credit: DefendingDRealm (https://www.redbubble.com/)