Slide 1

Slide 1 text

On-premise コンテナ基盤と Hardware LB を使った “type LoadBalancer” @サイバーエージェントとさくらインターネットのインフラ談義

Slide 2

Slide 2 text

青山 真也 (Masaya Aoyama) 普段の主な仕事↓ 世界で 138 番目 https://adtech.cyberagent.io/techblog/ archives/3086

Slide 3

Slide 3 text

adtech studio のプライベートクラウド環境 ・OpenStack をベースとしたプライベートクラウド環境 ・Network のレイテンシが許容されないアドテクシステム そんな弊社にも Production で利用可能な GKE ライクなコンテナ基盤 AKE (Adtech Container Engine)

Slide 4

Slide 4 text

GKE が Google Kubernetes Engine に GKE = Google Container Engine AKE = Adtech Container Engine 参考: https://cloudplatform.googleblog.com/2017/11/introducing-Certified-Kubernetes-and-Google-Kubernetes-Engine.html?utm_source=feedburner&ut m_medium=feed&utm_campaign=Feed:+ClPlBl+(Cloud+Platform+Blog)

Slide 5

Slide 5 text

みなさん Kubernetes って どういう環境で利用されていますか?

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

素の Kubernetes を構築した場合 ① Dynamic Persistent Volume Provisioning が使えない ○ PVC の要求に応じて PV を動的に払い出す機能 3 GB の Persistent Volume 頂戴! 5 GBの Persistent Volume あげる! 5GB 10 GB 7 GB 事前に作成 事前に作成する手間、容量の無駄が発生しやすい

Slide 8

Slide 8 text

素の Kubernetes を構築した場合 ① Dynamic Persistent Volume Provisioning が使えない ○ PVC の要求に応じて PV を動的に払い出す機能 3 GB の Persistent Volume 頂戴! 3 GBの Persistent Volume あげる! 3 GB 欲しいって言われたから 作って渡そう 利用者の管理コストが低下

Slide 9

Slide 9 text

おいでおいで〜 …

Slide 10

Slide 10 text

素の Kubernetes を構築した場合 ② type LoadBalancer Service が使えない ○ クラスタ外 LoadBalancer を作成する機能

Slide 11

Slide 11 text

おいでおいで〜 …

Slide 12

Slide 12 text

機能の実現と Cloud Provider ① Dynamic Persistent Volume Provisioning ● Kubernetes の Cloud Provider 連携機能を利用 ● Persistent Volume Plugin (ScaleIO, Flusterfs) ② type LoadBalancer ● Kubernetes の Cloud Provider 連携機能を利用 ○ 純粋なベアメタル/VM で Cloud Provider 連携してない場合は? ○ OpenStack で LBaaS 機能を利用していない場合は?

Slide 13

Slide 13 text

This is a slide title 今回は AKE の中でも、 LoadBalancer 周りの話をします。

Slide 14

Slide 14 text

AKE 1.0 の構成 (NodePort + Metal LB) eth0: 10.0.0.1:34567 VM α Kubernets node Internal VM β Kubernets node 52.0.0.1:80 LoadBalancer External apiVersion: v1 kind: Service metadata: name: svc1 spec: type: NodePort ports: - name: "http-port" protocol: "TCP" port: 80 targetPort: 80 52.0.0.1:80 > 10.0.0.1:34567 > 10.0.0.2:34567 (cli で登録が必要) eth0: 10.0.0.2:34567

Slide 15

Slide 15 text

AKE 1.0 の構成 (NodePort + Metal LB + (HAProxy)) VM α Kubernets node Internal VM β Kubernets node 52.0.0.1:80 LoadBalancer (+ HAProxy) External 52.0.0.1:80 > 10.0.0.1:34567 > 10.0.0.2:34567 (cli で登録が必要) apiVersion: v1 kind: Service metadata: name: svc1 spec: type: NodePort ports: - name: "http-port" protocol: "TCP" port: 80 targetPort: 80 eth0: 10.0.0.1:34567 eth0: 10.0.0.2:34567

Slide 16

Slide 16 text

SNAT, NAPT ができない場合 VM α Kubernets node Internal VM β Kubernets node 52.0.0.1:80 LoadBalancer External 仮に Service が増えたことを考えると、 こんな感じになります 52.0.0.1:80 > VM α:80 > VM β:80 52.0.0.2:80 > VM α:80 > VM β:80 lo.0: 52.0.0.1:80 lo.1: 52.0.0.2:80 lo.0: 52.0.0.1:80 lo.1: 52.0.0.2:80

Slide 17

Slide 17 text

SNAT, NAPT ができない場合 VM α Kubernets node Internal VM β Kubernets node 52.0.0.1:80 LoadBalancer External 52.0.0.1:80 > VM α:80 > VM β:80 52.0.0.2:80 > VM α:80 > VM β:80 NodePort は Interface 全てで Bind されてしまうため利用出来ない 例: *:80 apiVersion: v1 kind: Service metadata: name: svc2 spec: type: NodePort ports: - name: "http-port" protocol: "TCP" port: 80 targetPort: 80 apiVersion: v1 kind: Service metadata: name: svc1 spec: type: NodePort ports: - name: "http-port" protocol: "TCP" port: 80 targetPort: 80 lo.0: 52.0.0.1:80 lo.1: 52.0.0.2:80 lo.0: 52.0.0.1:80 lo.1: 52.0.0.2:80

Slide 18

Slide 18 text

SNAT, NAPT ができない場合 VM α Kubernets node Internal VM β Kubernets node 52.0.0.1:80 LoadBalancer External externalIPs 使えば いけないことも無いが … 利便性が著しく低い … metadata: name: svc1 spec: externalIPs: - 52.0.0.1 ports: - name: "http-port" protocol: "TCP" port: 80 targetPort: 80 52.0.0.1:80 > VM α:80 > VM β:80 52.0.0.2:80 > VM α:80 > VM β:80 … metadata: name: svc2 spec: externalIPs: - 52.0.0.2 ports: - name: "http-port" protocol: "TCP" port: 80 targetPort: 80 lo.0: 52.0.0.1:80 lo.1: 52.0.0.2:80 lo.0: 52.0.0.1:80 lo.1: 52.0.0.2:80

Slide 19

Slide 19 text

おいでおいで〜 …

Slide 20

Slide 20 text

This is a slide title ① SNAT, NAPT が必須な構成 ボトルネック or リソースが必要 ② 外部のコマンドでやってもらうの不便 やっぱりGKE がいいって言われる

Slide 21

Slide 21 text

VM α Kubernets node Internal VM β Kubernets node 52.0.0.1:80 LoadBalancer External 52.0.0.1:80 > VM α:80 > VM β:80 52.0.0.2:80 > VM α:80 > VM β:80 apiVersion: v1 kind: Service metadata: name: svc2 spec: type: ClusterIP ports: - name: "http-port" protocol: "TCP" port: 80 targetPort: 80 apiVersion: v1 kind: Service metadata: name: svc1 spec: type: ClusterIP ports: - name: "http-port" protocol: "TCP" port: 80 targetPort: 80 AKE 2.0 の構成 (ClusterIP + Metal LB)

Slide 22

Slide 22 text

VM α Kubernets node Internal VM β Kubernets node 52.0.0.1:80 LoadBalancer External 52.0.0.1:80 > VM α:80 > VM β:80 52.0.0.2:80 > VM α:80 > VM β:80 apiVersion: v1 kind: Service metadata: name: svc2 spec: type: ClusterIP ports: - name: "http-port" protocol: "TCP" port: 80 targetPort: 80 apiVersion: v1 kind: Service metadata: name: svc1 spec: type: ClusterIP ports: - name: "http-port" protocol: "TCP" port: 80 targetPort: 80 AKE 2.0 の構成 (ClusterIP + Metal LB) 自前で動的に iptables を書き換えて頑張る (listen しない、ClusterIP を利用) 52.0.0.1:80 宛にきたパケットを 該当 Service の KUBE-SVC-* に転送

Slide 23

Slide 23 text

This is a slide title ① SNAT, NAPT が必須な構成 ボトルネック or リソースが必要 ② 外部のコマンドでやってもらうの不便 やっぱりGKE がいいって言われる

Slide 24

Slide 24 text

This is a slide title やっぱ諦められない type LoadBalancer

Slide 25

Slide 25 text

This is a slide title ① 外部 LoadBalancer の操作 ② IP 払い出しの自動化 ③ K8s Node の iptables 操作

Slide 26

Slide 26 text

type LoadBalancer のつくりかた CloudProvider プラグインを自作しましょう。 ● LoadBalancer (今回はここの話) ● Routing ● Host ● Zone ● BlockDevice (参考) インターフェースの一覧: pkg/cloudprovider/cloud.go OpenStack の場合、pkg/cloudprovider/providers/openstack/* 辺り

Slide 27

Slide 27 text

LoadBalancer 用の Interface GetLoadBalancer(clusterName string, service *v1.Service)  ・あまり変える部分はない EnsureLoadBalancer(clusterName string, service *v1.Service, nodes []*v1.Node)  ・LoadBalancer を作成する、IP の指定がない場合は自動アサイン UpdateLoadBalancer(clusterName string, service *v1.Service, nodes []*v1.Node)  ・LoadBalancer を更新する EnsureLoadBalancerDeleted(clusterName string, service *v1.Service)  ・LoadBalancer を削除する 大まかには上記 3 種類の Interface を実装してあげる形 渡ってくる構造体に必要な情報は大体揃っている service.Name service.Spec.LoadBalancerIP service.Spec.Ports[].Port service.Spec.Ports[].TargetPort nodes.[].Name

Slide 28

Slide 28 text

This is a slide title この 4 つの関数を作ると

Slide 29

Slide 29 text

VM α Kubernets node Internal VM β Kubernets node 52.0.0.1:80 LoadBalancer External 52.0.0.1:80 > VM α:80 > VM β:80 52.0.0.2:80 > VM α:80 > VM β:80 apiVersion: v1 kind: Service metadata: name: svc2 spec: type: LoadBalancer ports: - name: "http-port" protocol: "TCP" port: 80 targetPort: 80 apiVersion: v1 kind: Service metadata: name: svc1 spec: type: LoadBalancer ports: - name: "http-port" protocol: "TCP" port: 80 targetPort: 80 AKE 3.0 の構成 (LoadBalancer + Metal LB) GKE などと全く同じ type LoadBalancer

Slide 30

Slide 30 text

今後オンプレにより求められるのは、 パブリッククラウドとのシームレスな統合 コンテナ環境だとなおさら移行し易い GKE > AKE & AKE > GKE これでマルチクラウドでの展開も容易に

Slide 31

Slide 31 text

This is a slide title ちょっとまった Ingress ってのもいるよね?

Slide 32

Slide 32 text

おいでおいで〜 …

Slide 33

Slide 33 text

残すところ Ingress HTTP LoadBalancer を提供する Ingress ● GKE 様だと L7 GCLB 様がいらっしゃられる ● それ以外は {nginx, nghttpx}-ingress-controller を使う ○ ちょっと使い勝手が悪い、手間が多い、 GKE とは結構違う 現在 GKE Like に Ingress を使えるように controller を実装中。 ● 12/1 の Kubernetes Advent Calender で公開予定