Slide 1

Slide 1 text

数理統計学特論I 第7回 推定論 奥 牧人 (未病研究センター) 2025/06/04 1 / 37

Slide 2

Slide 2 text

前回の復習 前回の目的 十分統計量とその関連用語の意味を理解すること 前回の達成目標 十分統計量の意味を説明できる。 十分統計量の分解定理を説明できる。 ラオ・ブラックウェルの定理を説明できる。 完備十分統計量の意味を説明できる。 2 / 37

Slide 3

Slide 3 text

今回の位置付け 1. 前置きと準備 2. 確率と1次元の確率変数 3. 多次元の確率変数 4. 統計量と標本分布 5. 統計的決定理論の枠組み 6. ⼗分統計量 7. 推定論 8. 検定論 9. 区間推定 10. 正規分布、2項分布に関する推測 その他の話題 11. 線形モデル 12. ノンパラメトリック法 13. 漸近理論 14. ベイズ法 確率と統計の基礎 良い点推定とは︖ 良い検定とは︖ 問題設定と準備 7章と8章に関する証明 回帰分析と分散分析を統⼀的に理解 常⽤される⼿法を改めて整理 ベイズ統計を簡単に紹介 ノンパラを簡単に紹介 3 / 37

Slide 4

Slide 4 text

今回の目的と達成目標 目的 点推定の最適性に関する理論について理解すること 達成目標 不偏推定量の意味を説明できる。 フィッシャー情報量の意味を説明できる。 クラメル・ラオの不等式の意味を説明できる。 不偏推定の問題点を説明できる。 最尤推定量の意味と漸近有効性を説明できる。 4 / 37

Slide 5

Slide 5 text

予習用キーワードの確認 不偏推定 尤度関数 5 / 37

Slide 6

Slide 6 text

Outline 1. 点推定論の枠組み 2. 不偏推定量とフィッシャー情報量 3. 完備十分統計量に基づく不偏推定量 4. 不偏推定の問題点 5. 最尤推定量 6. クラメル・ラオの不等式の一般化 6 / 37

Slide 7

Slide 7 text

Outline 1. 点推定論の枠組み 2. 不偏推定量とフィッシャー情報量 3. 完備十分統計量に基づく不偏推定量 4. 不偏推定の問題点 5. 最尤推定量 6. クラメル・ラオの不等式の一般化 7 / 37

Slide 8

Slide 8 text

推定における記法と設定 推定では、決定関数 のことを または単に と書き、 推定量と呼ぶ リスク関数として平均二乗誤差を使う バイアス-バリアンス分解 (ここだけ とおく) をバイアスと呼ぶ δ(X) ^ θ(X) ^ θ R(θ, ^ θ) = E[( ^ θ − θ) 2 ] E[ ^ θ] = μ E[( ^ θ − θ) 2 ] = E[( ^ θ − μ + μ − θ) 2 ] = E[( ^ θ − μ) 2 ] + E[(μ − θ) 2 ] + 0 = V [ ^ θ] + (μ − θ) 2 μ − θ 8 / 37

Slide 9

Slide 9 text

バイアスとバリアンス 母集団から標本を抽出して を計算、を何度も行うとする。 バリアンス は、推定値のバラツキの大きさを表す。 バイアス は、推定値の平均と真の値のズレを表す。 ^ θ V [ ^ θ] E[ ^ θ] − θ 9 / 37

Slide 10

Slide 10 text

不偏推定量 が不偏推定量であるとは、以下が成り立つこと 例、不偏分散 (参考) 最尤推定の場合 ^ θ E[ ^ θ] = θ, ∀θ s 2 = 1 n − 1 n ∑ i=1 (Xi − ¯ X) 2 s 2 n = 1 n n ∑ i=1 (Xi − ¯ X) 2 10 / 37

Slide 11

Slide 11 text

Outline 1. 点推定論の枠組み 2. 不偏推定量とフィッシャー情報量 3. 完備十分統計量に基づく不偏推定量 4. 不偏推定の問題点 5. 最尤推定量 6. クラメル・ラオの不等式の一般化 11 / 37

Slide 12

Slide 12 text

一様最小分散不偏推定量 不偏推定の場合、平均二乗誤差は分散 のみになる 従って、不偏推定量の中では、分散が最小となるものが最適 一様最小分散不偏推定量 (Uniformly Minimum Variance Unbiaced estimator, 略して UMVU と書く) 不偏推定量 が UMVU であるとは、任意の不偏推定量 に 対して以下が成り立つこと V [ ^ θ] E[( ^ θ − θ) 2 ] = V [ ^ θ] ^ θ ∗ ^ θ V [ ^ θ ∗ ] ≤ V [ ^ θ], ∀θ 12 / 37

Slide 13

Slide 13 text

話の流れを整理 不偏推定量 UMVU (不偏の中で最適) UMVU であることを示す方法 1. クラメル・ラオの不等式を使う方法 (フィッシャー情報量 を含む) 2. 完備十分統計量を使う方法 最尤推定量 13 / 37

Slide 14

Slide 14 text

フィッシャー情報量 の確率質量関数または確率密度関数 を、パラメータ を明示して と書く フィッシャー情報量 対数尤度関数 とし、 と書け ば、以下のように略記できる の場合 が成り立つ X = (X1 , … , Xn ) p(x) θ f(x, θ) In (θ) = E [( ∂ ∂θ log f(x, θ)) 2 ] ℓ(θ) = log f(x, θ) ℓ ′ (θ) = ∂ℓ(θ)/∂θ In (θ) = E[ℓ ′ (θ) 2 ] X1 , … , Xn i.i.d. ∼ F In (θ) = nI1 (θ) 14 / 37

Slide 15

Slide 15 text

クラメル・ラオの不等式 クラメル・ラオの不等式 ( は不偏推定量) ただし、 と、微分と積分が交換可能なこと (正則条件) を仮定 [定理] クラメル・ラオの不等式が成り立つ場合、不偏推定量 が以下を満たせば UMVU である ^ θ V [ ^ θ] ≥ 1 In (θ) In (θ) > 0 ^ θ ∗ V [ ^ θ ∗ ] = 1 In (θ) , ∀θ 15 / 37

Slide 16

Slide 16 text

例 の の推定量 について計算 の確率密度関数 ( より 個分で良い) 対数尤度関数 で偏微分 X1 , … , Xn i.i.d. ∼ N (μ, σ2 ) μ ¯ X Xi In (θ) = nI1 (θ) 1 f(xi , μ) = 1 √2πσ exp (− (xi − μ) 2 2σ2 ) ℓ(μ) = log f(xi , μ) = − (xi − μ)2 2σ2 − 1 2 log(2πσ 2 ) μ ℓ ′ (μ) = ∂ ∂μ ℓ(μ) = xi − μ σ2 16 / 37

Slide 17

Slide 17 text

例、続き フィッシャー情報量 クラメル・ラオの不等式の下界は、 これは に一致するので、 は確かに UMVU である。 I1 (μ) = E[ℓ ′ (μ) 2 ] = E [ (Xi − μ) 2 σ4 ] = 1 σ2 1 In (μ) = 1 nI1 (μ) = σ2 n V [ ¯ X] ¯ X ¯ X ∼ N (μ, σ2 n ) 17 / 37

Slide 18

Slide 18 text

分散は? クラメル・ラオの不等式では不偏分散 が UMVU であることを 示せない UMVU なのだが、下界を達成しない 次に紹介する別の方法で証明する s 2 18 / 37

Slide 19

Slide 19 text

Outline 1. 点推定論の枠組み 2. 不偏推定量とフィッシャー情報量 3. 完備十分統計量に基づく不偏推定量 4. 不偏推定の問題点 5. 最尤推定量 6. クラメル・ラオの不等式の一般化 19 / 37

Slide 20

Slide 20 text

完備十分統計量とUMVU [定理] 完備十分統計量 の関数である不偏推定量 は一意に定ま り UMVU となる。 また、任意の不偏推定量を とするとき は に一致 する。 T ^ θ ∗ (T ) ^ θ E[ ^ θ|T ] ^ θ∗ (T ) 20 / 37

Slide 21

Slide 21 text

証明 完備統計量の関数となる不偏推定量は一意であることを示す , を不偏推定量とし、 とおけば なので、完備性の定義より 続いて、任意の不偏推定量 に対して、 を完備十分とし を作ると、不偏となるので一意に定まる。 は十分統計量なので ラオ・ブラックウェルの定理を適用すれば ^ θ1 ^ θ2 g(T ) = ^ θ1 (T ) − ^ θ2 (T ) E[g(T )] = θ − θ = 0, ∀θ ^ θ1 (T ) ≡ ^ θ2 (T ) ^ θ T ^ θ ∗ (T ) = E[ ^ θ|T ] T V [ ^ θ ∗ ] ≤ V [ ^ θ], ∀θ 21 / 37

Slide 22

Slide 22 text

例 母集団が正規分布 のとき、以下は完備十分統計量 , は完備十分統計量 の関数の形をしている , は不偏である 従って、 , は UMVU である N (μ, σ 2 ) T1 = n ∑ i=1 Xi , T2 = n ∑ i=1 X 2 i ¯ X s 2 T = (T1 , T2 ) ¯ X = T1 n , s 2 = T2 − T 2 1 /n n − 1 ¯ X s 2 E[ ¯ X] = μ, E[s 2 ] = σ 2 ¯ X s 2 22 / 37

Slide 23

Slide 23 text

Outline 1. 点推定論の枠組み 2. 不偏推定量とフィッシャー情報量 3. 完備十分統計量に基づく不偏推定量 4. 不偏推定の問題点 5. 最尤推定量 6. クラメル・ラオの不等式の一般化 23 / 37

Slide 24

Slide 24 text

不偏推定の問題点 母数の変換に対して不変ではない 例、 は不偏推定だが、 は不偏ではない 標準偏差の UMVU (複雑過ぎて使う人はいない) s2 s E[s] < σ s ′ = √n − 1 Γ((n − 1)/2) √2 Γ(n/2) s 24 / 37

Slide 25

Slide 25 text

不偏推定量の問題点、続き 存在しない場合がある 例、正規分布の の不偏推定量は存在しない 不合理な場合がある 例、正規分布の の UMVU は負の値になる場合がある 例2、幾何分布 の の不偏推定量は、標本サイズが の場合 |μ| μ 2 p(x) = (1 − p) x p, x = 0, 1, 2, … p 1 ^ p = { 1 if x = 0 0 if x ≥ 1 25 / 37

Slide 26

Slide 26 text

スタインのパラドックス UMVU は不偏推定の中で最適なもの 不偏に限らなければ、より良いものが存在する場合もある 意外な例として、スタインのパラドックスがある , のとき、 の UMVU は 自身である のとき、各要素を以下のようにした推定量の方が平均二乗 誤差が常に小さいことが示されている Xi ∼ N (μi , 1) i = 1, … , n (μ1 , … , μn ) (X1 , … , Xn ) n ≥ 3 ^ μ i = (1 − n − 2 ∑ n j=1 X 2 j )X i 26 / 37

Slide 27

Slide 27 text

Outline 1. 点推定論の枠組み 2. 不偏推定量とフィッシャー情報量 3. 完備十分統計量に基づく不偏推定量 4. 不偏推定の問題点 5. 最尤推定量 6. クラメル・ラオの不等式の一般化 27 / 37

Slide 28

Slide 28 text

最尤推定量 尤度関数 確率質量関数または確率密度関数をパラメータ の関数と みなしたもの 対数尤度関数 最尤推定量 漸近有効性を持つ 十分統計量の関数になる 変数変換に対して不変 L(θ) θ ℓ(θ) = log L(θ) ^ θ ^ θ = arg max θ L(θ) = arg max θ ℓ(θ) 28 / 37

Slide 29

Slide 29 text

例 二項分布の場合 を で微分して とおくと、 従って、最尤推定量は L(p) = ( )p x (1 − p) n−x ℓ(p) = x log p + (n − x) log(1 − p) + log ( ) n x n x ℓ(θ) p 0 x p − n − x 1 − p = x − np p(1 − p) = 0 ^ p = x/n 29 / 37

Slide 30

Slide 30 text

正規分布の例 とおくと、 まず を で偏微分して とおくと、 これを代入し、 で微分して とおくと、 より、 を得る。 τ = σ 2 L(μ, τ ) = n ∏ i=1 1 (2πτ )1/2 exp (− (xi − μ) 2 2τ ) ℓ(μ, τ ) = − n 2 log(2πτ ) − 1 2τ n ∑ i=1 (xi − μ) 2 ℓ(μ, τ ) μ 0 ^ μ = ¯ x τ 0 − n 2 2π 2πτ + 1 2τ 2 n ∑ i=1 (xi − ¯ x) 2 = 0 ^ τ = s 2 n 30 / 37

Slide 31

Slide 31 text

漸近有効性 が大きければ最尤推定量は UMVU とほぼ同じになる サイズ の標本に基づく最尤推定量を と書く 幾つかの条件の下で、 のとき以下が成り立つ 1つ目の性質を一致性と呼ぶ 2つ目は、バイアスが よりも速く減少するという意味 3つ目は、クラメル・ラオの不等式の下界に相当 n n ^ θn n → ∞ ^ θn p → θ √n(E[ ^ θn ] − θ) → 0 nV [ ^ θn ] → 1 I1 (θ) 1/√n 31 / 37

Slide 32

Slide 32 text

Outline 1. 点推定論の枠組み 2. 不偏推定量とフィッシャー情報量 3. 完備十分統計量に基づく不偏推定量 4. 不偏推定の問題点 5. 最尤推定量 6. クラメル・ラオの不等式の一般化 32 / 37

Slide 33

Slide 33 text

クラメル・ラオの不等式の一般化 クラメル・ラオの不等式 (再掲) 多次元の場合 ( とする) ここで は の共分散行列であり、 は以下で定義される フィッシャー情報行列 また、行列 , について は が半正定値の意 V [ ^ θ] ≥ 1 In (θ) θ = (θ1 , … , θk ) V [ ^ θ] ≥ I(θ) −1 V [ ^ θ] ^ θ I(θ) Iij (θ) = E [ ∂ℓ(θ) ∂θi ∂ℓ(θ) ∂θj ] A B A ≥ B A − B 33 / 37

Slide 34

Slide 34 text

まとめ (前半) 点推定の最適性に関する理論について説明しました。 1. 点推定論の枠組み 2. 不偏推定量とフィッシャー情報量 ! 不偏推定量の意味を説明できる? ! フィッシャー情報量の意味を説明できる? ! クラメル・ラオの不等式の意味を説明できる? 3. 完備十分統計量に基づく不偏推定量 34 / 37

Slide 35

Slide 35 text

まとめ (後半) 点推定の最適性に関する理論について説明しました。 4. 不偏推定の問題点 ! 不偏推定の問題点を説明できる? 5. 最尤推定量 ! 最尤推定量の意味と漸近有効性を説明できる? 6. クラメル・ラオの不等式の一般化 35 / 37

Slide 36

Slide 36 text

小テスト Moodleで小テストに回答して下さい。 期限は今週中 (日曜の23:59まで) とします。 繰り返し受験して構いません。最高得点で成績をつけます。 36 / 37

Slide 37

Slide 37 text

期末試験 来週は期末試験 (60分) と解説 (30分) です。 鉛筆またはシャープペンシル、消しゴム を持ってきて下さい。 スマホ、ノートPC、本などの 持ち込み可 とします。 37 / 37