Slide 1

Slide 1 text

SC3 - consensus clustering of single-cell RNA-Seq data Vladimir Kiselev PostDoc Hemberg group

Slide 2

Slide 2 text

Identification of cell types ~45000 cells from mouse retina Wikipedia: “Animals have evolved a greater diversity of cell types in a multicellular body (100–150 different cell types)” Old methods • Surface markers • Morphology New methods • Single-cell RNA-Seq

Slide 3

Slide 3 text

Unsupervised clustering of cells Facts: • More than 100 clustering algorithms available • Single-Cell data is new and high-dimensional • Standard robust and efficient algorithm is k-means Problems with new algorithms: • Parameters • Speed • Scalability

Slide 4

Slide 4 text

Distance Dimensionality reduction PCA Spectral MDS Spectral Reg. Pearson Spearman Euclidean Minkowski Manhattan Gene Filter Genes Cell Filter d - first d eigenvectors N Cells reduction of dimensionality k-means k clusters k is known! d Dimensionality reduction pipeline

Slide 5

Slide 5 text

define k; k-means

Slide 6

Slide 6 text

define k; (randomly generate k centroids) k-means

Slide 7

Slide 7 text

define k; (randomly generate k centroids) cluster by nearest centroid readjust centroids k-means

Slide 8

Slide 8 text

define k; for(i = 0; i < number of starts; i++) { (randomly generate k centroids) for(j = 0; j < number of iterations; j++) { cluster by nearest centroid readjust centroids } } } k-means

Slide 9

Slide 9 text

Adjusted Rand Index (ARI) k-means ARI • Like Spearman correlation between two clusterings • If ARI = 0.8 then clustering is very good d Distance Dimensionality reduction Pearson Spearman Euclidean Minkowski Manhattan Gene Filter Genes Cell Filter d - first d eigenvectors N Cells reduction of dimensionality k clusters gold standard is known! PCA Spectral MDS Spectral Reg.

Slide 10

Slide 10 text

Datasets for pipeline testing Publication N k Name Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509, 371–375 (2014) 80 5 quake Ting, D. T. et al. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 8, 1905–1918 (2014). 149 7 ting Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014) 268 10 sandberg Pollen, A. A. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32, 1053–1058 (2014). 301 11 pollen Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014) 430 5 bernstein Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single- cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015). 622 11 usoskin Klein, A. M. et al. Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells. Cell 161, 1187–1201 (2015). 2717 4 kirschner Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015) 3005 9 linnarsson Macosko, E. Z. et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 161, 1202–1214 (2015). 44808 39 maccarroll

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

No content

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

No content

Slide 17

Slide 17 text

No content

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

No content

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

No content

Slide 23

Slide 23 text

No content

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

No content

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

No content

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

No content

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

No content

Slide 40

Slide 40 text

No content

Slide 41

Slide 41 text

No content

Slide 42

Slide 42 text

No content

Slide 43

Slide 43 text

No content