Slide 1

Slide 1 text

Unlocking  the  Universe  with   Python  and  LSST   Jake  VanderPlas   RuPy,  Oct  11th  2013  

Slide 2

Slide 2 text

Then:  Edwin  Hubble  at   Mount  Wilson  Observatory   1990s  -­‐  Now:  the  Hubble  Space   Telescope  in  Low  Earth  Orbit…  

Slide 3

Slide 3 text

Today:  Survey  Astronomy  –   Sloan  Digital  Sky  Survey   SDSS  Telescope:  Apache  Point  NM  

Slide 4

Slide 4 text

Large   SynopQc   Survey   Telescope  

Slide 5

Slide 5 text

Large   SynopQc   Survey   Telescope   LSST in a sentence: An optical/near-IR multi-color survey of half the sky, based on ~1000 visits over a 10-year period

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

8.4  meter  primary  mirror   3,000  Megapixel  CCD  camera   Field  of  View:  9.5  deg2   Largest  digital  camera  in  the   world!  

Slide 8

Slide 8 text

LSST:  a    10-­‐year,  full-­‐sky  digital  color  movie   -­‐  Full  southern  sky  every  3-­‐4  nights   -­‐  30,000  GB/night  data  stream   -­‐  Real-­‐Qme  transient  alerts   -­‐  Final  Catalog:  100s  of  Petabytes  

Slide 9

Slide 9 text

•  Adler  Planetarium   •  Argonne  NaQonal  Laboratory   •  Brookhaven  NaQonal  Laboratory  (BNL)     •  California  InsQtute  of  Technology   •  Carnegie  Mellon  University   •  Chile   •  Cornell  University   •  Drexel  University   •  Fermi  NaQonal  Accelerator  Laboratory     •  George  Mason  University   •  Google,  Inc.   •  Harvard-­‐Smithsonian  Center  for  Astrophysics   •  InsQtut  de  Physique  Nucleaire  et  de  Physique   des  ParQcules  (IN2P3)   •  Johns  Hopkins  University   •  Kavli  InsQtute  for  ParQcle  Astrophysics  and   Cosmology  (KIPAC)  -­‐  Stanford  University   •  Las  Cumbres  Observatory  Global  Telescope   Network,  Inc.   •  Lawrence  Livermore  NaQonal  Laboratory  (LLNL)   •  Los  Alamos  NaQonal  Laboratory  (LANL)   •  NaQonal  OpQcal  Astronomy  Observatory   •  NaQonal  Radio  Astronomy  Observatory   •  Northwestern  University   •  Princeton  University   •  Purdue  University   •  Research  CorporaQon  for  Science  Advancement   •  Rutgers  University   •  SLAC  NaQonal  Accelerator  Laboratory   •  Space  Telescope  Science  InsQtute   •  Texas  A  &  M  University   •  The  InsQtute  of  Physics  of  the  Academy  of   Sciences  of  the  Czech  Republic   •  The  Pennsylvania  State  University   •  The  University  of  Arizona   •  University  of  California  at  Davis   •  University  of  California  at  Irvine   •  University  of  Illinois  at  Urbana-­‐Champaign   •  University  of  Michigan   •  University  of  Pennsylvania   •  University  of  Piesburgh   •  University  of  Washington   •  Vanderbilt  and  Fisk  UniversiQes   LSST  Ins(tu(onal  Members:  

Slide 10

Slide 10 text

•  Adler  Planetarium   •  Argonne  NaQonal  Laboratory   •  Brookhaven  NaQonal  Laboratory  (BNL)     •  California  InsQtute  of  Technology   •  Carnegie  Mellon  University   •  Chile   •  Cornell  University   •  Drexel  University   •  Fermi  NaQonal  Accelerator  Laboratory     •  George  Mason  University   •  Google,  Inc.   •  Harvard-­‐Smithsonian  Center  for  Astrophysics   •  InsQtut  de  Physique  Nucleaire  et  de  Physique   des  ParQcules  (IN2P3)   •  Johns  Hopkins  University   •  Kavli  InsQtute  for  ParQcle  Astrophysics  and   Cosmology  (KIPAC)  -­‐  Stanford  University   •  Las  Cumbres  Observatory  Global  Telescope   Network,  Inc.   •  Lawrence  Livermore  NaQonal  Laboratory  (LLNL)   •  Los  Alamos  NaQonal  Laboratory  (LANL)   •  NaQonal  OpQcal  Astronomy  Observatory   •  NaQonal  Radio  Astronomy  Observatory   •  Northwestern  University   •  Princeton  University   •  Purdue  University   •  Research  CorporaQon  for  Science  Advancement   •  Rutgers  University   •  SLAC  NaQonal  Accelerator  Laboratory   •  Space  Telescope  Science  InsQtute   •  Texas  A  &  M  University   •  The  InsQtute  of  Physics  of  the  Academy  of   Sciences  of  the  Czech  Republic   •  The  Pennsylvania  State  University   •  The  University  of  Arizona   •  University  of  California  at  Davis   •  University  of  California  at  Irvine   •  University  of  Illinois  at  Urbana-­‐Champaign   •  University  of  Michigan   •  University  of  Pennsylvania   •  University  of  Piesburgh   •  University  of  Washington   •  Vanderbilt  and  Fisk  UniversiQes   LSST  Ins(tu(onal  Members:  

Slide 11

Slide 11 text

•  Adler  Planetarium   •  Argonne  NaQonal  Laboratory   •  Brookhaven  NaQonal  Laboratory  (BNL)     •  California  InsQtute  of  Technology   •  Carnegie  Mellon  University   •  Chile   •  Cornell  University   •  Drexel  University   •  Fermi  NaQonal  Accelerator  Laboratory     •  George  Mason  University   •  Google,  Inc.   •  Harvard-­‐Smithsonian  Center  for  Astrophysics   •  InsQtut  de  Physique  Nucleaire  et  de  Physique   des  ParQcules  (IN2P3)   •  Johns  Hopkins  University   •  Kavli  InsQtute  for  ParQcle  Astrophysics  and   Cosmology  (KIPAC)  -­‐  Stanford  University   •  Las  Cumbres  Observatory  Global  Telescope   Network,  Inc.   •  Lawrence  Livermore  NaQonal  Laboratory  (LLNL)   •  Los  Alamos  NaQonal  Laboratory  (LANL)   •  NaQonal  OpQcal  Astronomy  Observatory   •  NaQonal  Radio  Astronomy  Observatory   •  Northwestern  University   •  Princeton  University   •  Purdue  University   •  Research  CorporaQon  for  Science  Advancement   •  Rutgers  University   •  SLAC  NaQonal  Accelerator  Laboratory   •  Space  Telescope  Science  InsQtute   •  Texas  A  &  M  University   •  The  InsQtute  of  Physics  of  the  Academy  of   Sciences  of  the  Czech  Republic   •  The  Pennsylvania  State  University   •  The  University  of  Arizona   •  University  of  California  at  Davis   •  University  of  California  at  Irvine   •  University  of  Illinois  at  Urbana-­‐Champaign   •  University  of  Michigan   •  University  of  Pennsylvania   •  University  of  Piesburgh   •  University  of  Washington   •  Vanderbilt  and  Fisk  UniversiQes   LSST  Ins(tu(onal  Members:  

Slide 12

Slide 12 text

How  do  we  prepare  the   Astronomy  community   for  this  data  deluge?  

Slide 13

Slide 13 text

Credit:  John  Peterson   LSST  Image  SimulaQon   (Video  of  SimulaQon)  

Slide 14

Slide 14 text

0.2”   OpQcal  Model                                          +Tracking                                                            +DiffracQon                            +Detector  PerturbaQons                 +Lens  PerturbaQons                  +Mirror  PerturbaQons                    +Detector                                                        +Dome  Seeing                 +Low  AlQtude                                          +Mid  AlQtude                                              +High  AlQtude                                        +PixelizaQon        Atmosphere                                                Atmosphere                                                Atmosphere   Peterson  et  al  2013  

Slide 15

Slide 15 text

ImSim  DescripQon   15  

Slide 16

Slide 16 text

LSST  SimulaQons:  Modeling  Everything  

Slide 17

Slide 17 text

Key  Component:  Difference  Imaging   OpQcal  Burst  in  the  Deep  Lens  Survey   hep://www.lsst.org/lsst/public/transient  

Slide 18

Slide 18 text

Key  Component:  Difference  Imaging   OpQcal  Burst  in  the  Deep  Lens  Survey   hep://www.lsst.org/lsst/public/transient   2  million  events  per  night,   ~500,000  are  random  fluctuaQons   several  thousand  are  “interesQng”  

Slide 19

Slide 19 text

~  100  Supernovae  used  to  discover  dark  energy     By  contrast,  LSST  will  observe  millions   Supernova  in  Pinwheel  galaxy  (BJ  Fulton,  The  Guardian)  

Slide 20

Slide 20 text

LSST  and  Cosmology:   Supernova:  measure  of  the   rate  of  expansion   GravitaQonal  Lensing:   measure  of  geometry   Baryon  OscillaQons:  trace   of  primordial  fluctuaQons   Clustering:  measure  of  the   geometry  and  structure  growth  

Slide 21

Slide 21 text

LSST  and  The  Transient  Universe:   TransiQng  Planets   Supernovae   Gamma  Ray  Bursts   Quasars/AGN   Stellar  flares  &   Variability   Asteroids  &   Comets  

Slide 22

Slide 22 text

Rest  et  al  2005;  courtesey  of  A.  Becker   Large  Magellanic  Cloud  (CTIO)  

Slide 23

Slide 23 text

2001  -­‐  2001  

Slide 24

Slide 24 text

2001  -­‐  2002  

Slide 25

Slide 25 text

2001  -­‐  2003  

Slide 26

Slide 26 text

2001  -­‐  2004  

Slide 27

Slide 27 text

2001  -­‐  2004   “Light  Echo”  from  the   famous  Supernova  1987A!  

Slide 28

Slide 28 text

Image  Differencing:  not  as  easy  as  it  sounds…   Rotate  &  align  with   “science  image”   Detect  sources   Model  point-­‐spread   funcQon   De-­‐convolve  &  subtract   –   =  

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

Base  ComputaQon  Layer:  C++  Object  Model.   User  Interface:  Python  Object  Model.   SWIG  binding  layer   Pipeline  Language  Model  

Slide 31

Slide 31 text

Why  Python?   Open  source  (free!)  &  cross-­‐plaqorm   Easy  wrapping  of  compiled  legacy  code   Dynamic,  InteracQve,  Easy  to  learn  and  use   (even  for  scienQsts!)  

Slide 32

Slide 32 text

Excellent  core  set  of  scienQfic  packages:   NumPy:  Array-­‐based  operaQons   SciPy:  ScienQfic  Python   Matplotlib:  PublicaQon-­‐quality  plosng   IPython:  InteracQve  CompuQng  

Slide 33

Slide 33 text

Excellent  core  set  of  scienQfic  packages:  

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

My  Soap-­‐box:  Reproducibility  

Slide 36

Slide 36 text

My  Soap-­‐box:  Reproducibility   Infamous  example:  Reinhart-­‐Rogoff  paper  

Slide 37

Slide 37 text

Infamous  example:  Reinhart-­‐Rogoff  paper   My  Soap-­‐box:  Reproducibility  

Slide 38

Slide 38 text

My  Soap-­‐box:  Reproducibility   Infamous  example:  Reinhart-­‐Rogoff  paper  

Slide 39

Slide 39 text

My  Soap-­‐box:  Reproducibility   Infamous  example:  Reinhart-­‐Rogoff  paper   heps://github.com/vincentarelbundock/Reinhart-­‐Rogoff  

Slide 40

Slide 40 text

If  it’s  not  reproducible,   it’s  not  science!  

Slide 41

Slide 41 text

hep://www.astroML.org   Our  Effort:  AstroML  –  Python  machine  learning  package  

Slide 42

Slide 42 text

hep://www.astroML.org   Our  Effort:  AstroML  –  Python  machine  learning  package  

Slide 43

Slide 43 text

hep://www.astroML.org   Our  Effort:  AstroML  –  Python  machine  learning  package  

Slide 44

Slide 44 text

hep://www.astroML.org   Our  Effort:  AstroML  –  Python  machine  learning  package  

Slide 45

Slide 45 text

Our  Effort:  AstroML  –  Python  machine  learning  package   hep://www.astroML.org   200+  Examples  of  real  analysis  on  real  data!   Already  several  papers  with  reproducible   analysis  through  AstroML  

Slide 46

Slide 46 text

•  LSST:  a  decade-­‐long  movie  of  the  enQre  southern   sky,  which  will  change  the  way  Astronomers  do  their   science.   •  Python:  quickly  becoming  the  tool  of  choice  for   much  data-­‐driven  research.   •  Reproducibility:  open-­‐source  tools  like  Python  &   IPython  notebook  will  be  vital  as  large  datasets   become  more  and  more  central  to  research.  

Slide 47

Slide 47 text

Email:  [email protected]     Twieer:  @jakevdp     Github:  jakevdp     Web:  hep://www.vanderplas.com     Blog:  hep://jakevdp.github.io