It’s ALL AI search:
building a unified
view for growth
Ray Grieselhuber
DemandSphere
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 2
Slide 2 text
Hi, I’m @raygrieselhuber
Founder & CEO of DemandSphere
18+ years experience in data systems,
engineering, and enterprise SEO
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slides:
Slide 3
Slide 3 text
There is no
traditional vs. AI search
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 4
Slide 4 text
It’s all AI search - the
question is the user experience
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Let’s talk about search in LLMs
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 7
Slide 7 text
The context window is not
infinite
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
PROMPT
INPUT
COMPLETION
PREVIOUS
TOKENS
NEXT
TOKENS
Slide 8
Slide 8 text
“Infinite” meaning complete
internet up to date in real time
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 9
Slide 9 text
So, we need Live Retrieval
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 10
Slide 10 text
The app wraps the LLM to determine tools
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
App (ChatGPT, etc)
LLM (GPT-5, etc)
USER INPUT
MODEL QUERY
LIVE
RETRIEVAL
Slide 11
Slide 11 text
Live Retrieval “solves” the finite context
window problem
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
LLMs
Search
Engines
Retrieval Layer High quality & more
relevant answers
Slide 12
Slide 12 text
Let’s talk about the Retrieval
Layer
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
The search tool queries one or more search engines
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
External channels
- web tool:
- search(query)
- open(url)
- file connectors:
- file_search etc
- recording connectors
Workspace channels
Visuals & Files
Policy & Guardrails
Search operators
Slide 15
Slide 15 text
Google & Bing form the backbone of AI search
Google
AI Overviews
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 16
Slide 16 text
Yes, ChatGPT is using Google
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 17
Slide 17 text
Data Study (April 2025)
● 10,000 prompts
● 17 industries
● Google
● Bing
● ChatGPT
● Perplexity
Slide 18
Slide 18 text
Measure index overlap in
citations
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 19
Slide 19 text
Data in April 2025 was showing heavy Google usage
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
51.72%
Google Index
ChatGPT 4o
14.26%
Bing Index
ChatGPT 4o
34.02%
Custom / Remix
ChatGPT 4o
37.12%
Google Index
Perplexity
45.63%
Custom / Remix
Perplexity
17.25%
Bing Index
Perplexity
Slide 20
Slide 20 text
ChatGPT is a Google wrapper
(Gasp)
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 21
Slide 21 text
What has changed?
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 22
Slide 22 text
Explosion in query fan-outs
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Commercial
best winter tires
Query fan-out
Query fan-out
Query fan-out
Query fan-out
Which brand is the best for winter?
Why are Blizzak tires so good?
Which is better for snow awd or snow tires?
Do snow tires really make a difference?
Slide 23
Slide 23 text
Before: source query = retrieval layer query
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Commercial
best winter tires
Query for live retrieval
“best winter tires”
RETRIEVAL
LAYER
Slide 24
Slide 24 text
Now: source query = ~10-12 retrieval layer queries
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Commercial
best winter tires
Queries for live retrieval
“best winter tires”
“which tire brand is best for winter”
“why are blizzak tires so good”
“which is better for snow awd or snow tires”
“do snow tires really make a difference”
etc.
RETRIEVAL
LAYER
x 10
Slide 25
Slide 25 text
We know this because we capture the fan-outs
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 26
Slide 26 text
ChatGPT (and others) are
building their citations based on
SERP data
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 27
Slide 27 text
Let’s talk about Google SERPs
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 28
Slide 28 text
It’s ALL AI search
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
AI Mode
2025
https://ai.google/our-ai-journey/
AI
Overviews
2024
Gemini 1.0
2023
PaLM
2022
MUM
2021
Passage
Ranking
2020
T5
2019
BERT
2018
Transformer
Architecture
2017
TensorFlow
2015
Google
Assistant
2016
Slide 29
Slide 29 text
The existence of
Zero Click SERP
Features does not
mean that there are
zero clicks
2024 Zero-Click Search Study
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 30
Slide 30 text
Metric tree analysis
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
70.5% Organic results
41.5% - Click
1,000,000
Searches
21.4% - New
search
28.5% Google property
41.5% Click
58.5% “Zero Click”
37.1% Session ends
Slide 31
Slide 31 text
Metric tree analysis
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
70.5% Organic results - Net CTR of 29%
41.5% - Click
1,000,000
Searches
21.4% - New
search
28.5% Google
property
41.5% Click
58.5% “Zero Click”
37.1% Session ends
Slide 32
Slide 32 text
Users are only on the first page
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 33
Slide 33 text
But the index is the prize
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 34
Slide 34 text
This is why Google removed num=100
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Commercial
best winter tires
Queries for live retrieval
“best winter tires”
“which tire brand is best for winter”
“why are blizzak tires so good”
“which is better for snow awd or snow tires”
“do snow tires really make a difference”
etc.
RETRIEVAL
LAYER
x 10
Slide 35
Slide 35 text
Building a unified view
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 36
Slide 36 text
The mindset
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Understand model
responses vs. live retrieval
Connect relationships
between available data
Focus on human attention
Slide 37
Slide 37 text
The data stack
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 38
Slide 38 text
Visibility monitoring
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Data points:
● Mentions
● Citations
● Share of Voice
● Index Overlap
Combine with:
● SERP data
● Log data
● GA4 data
Slide 39
Slide 39 text
Referral data from GA4
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Analyze:
● Sessions
● Pages
● Conversions
● Revenue
Use URL-level data to
deliver additional insights
Slide 40
Slide 40 text
Log data is crucial
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Analyze:
● Bot behavior
● Crawl issues
● Content opportunities
Combine with:
● Visibility monitoring
● Prompt research
Slide 41
Slide 41 text
SERP index overlap helps you predict visibility
at scale
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 42
Slide 42 text
Prompt research is a process, not a tool
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Valuable data sources:
- People Also Ask (PAAs)
- Reddit
- Keyword Planner
- Synthetic query generation
- Query fan-outs
- Topic & intent mapping
(content-focused)
Slide 43
Slide 43 text
Prompt volume should be seen
as relational and directional
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 44
Slide 44 text
Prompt volume challenge #1:
there is no “Search Console for
ChatGPT”
Speakerdeck.com/raygrieselhuber
@raygrieselhuber
Slide 45
Slide 45 text
Prompt volume challenge #2:
Clickstream data is very messy
Speakerdeck.com/raygrieselhuber
@raygrieselhuber