Slide 1

Slide 1 text

InfluxDB - an open source time series database Paul Dix CEO @pauldix paul@influxdb.com

Slide 2

Slide 2 text

What it’s for…

Slide 3

Slide 3 text

Metrics

Slide 4

Slide 4 text

Time Series

Slide 5

Slide 5 text

Analytics

Slide 6

Slide 6 text

Events

Slide 7

Slide 7 text

Use Cases

Slide 8

Slide 8 text

DevOps

Slide 9

Slide 9 text

Real-time analytics (user & business)

Slide 10

Slide 10 text

Sensor Data

Slide 11

Slide 11 text

Can’t you just use a regular DB?

Slide 12

Slide 12 text

order by time?

Slide 13

Slide 13 text

Doesn’t Scale

Slide 14

Slide 14 text

Example from metrics: 100 measurements per host * 10 hosts * 8640 per day (once every 10s) * 365 days = 3,153,600,000 records per year

Slide 15

Slide 15 text

Have fun with that table…

Slide 16

Slide 16 text

But wait, we’ll just keep the summaries!

Slide 17

Slide 17 text

1h averages = 8,760,000 per year

Slide 18

Slide 18 text

Lose Detail and AdHoc Queryability

Slide 19

Slide 19 text

So let’s use Cassandra, HBase, or Scaleasaurus!

Slide 20

Slide 20 text

Too much application code and complexity

Slide 21

Slide 21 text

Application logic and scripts to compute summaries

Slide 22

Slide 22 text

Application level logic for balancing

Slide 23

Slide 23 text

No data locality for AdHoc queries

Slide 24

Slide 24 text

How to handle data retention?

Slide 25

Slide 25 text

And then there’s more…

Slide 26

Slide 26 text

Web services

Slide 27

Slide 27 text

Libraries for web services

Slide 28

Slide 28 text

Data collection

Slide 29

Slide 29 text

Visualization

Slide 30

Slide 30 text

–Paul Dix “Building an application with an analytics component today is like building a web application in 1998. You spend months building infrastructure before getting to the actual thing you want to build.”

Slide 31

Slide 31 text

Analytics and monitoring should be about analyzing and interpreting data, not the infrastructure to store and process it.

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

A time series database with no external dependencies

Slide 34

Slide 34 text

Features Upcoming 0.9.0 release

Slide 35

Slide 35 text

Data model • Databases

Slide 36

Slide 36 text

Data model • Databases • Measurements • cpu_load, temperature, log_lines, click, etc.

Slide 37

Slide 37 text

Data model • Databases • Measurements • cpu_load, temperature, log_lines, click, etc. • Tags • region=uswest, host=serverA, building=23, service=redis, etc.

Slide 38

Slide 38 text

Data model • Databases • Measurements • cpu_load, temperature, log, click, etc. • Tags • region=uswest, host=serverA, building=23, service=redis, etc. • Series - measurement + unique tagset

Slide 39

Slide 39 text

Data model • Databases • Measurements • cpu_load, temperature, log, click, etc. • Tags • region=uswest, host=serverA, building=23, service=redis, etc. • Series - measurement + unique tagset • Points • Fields - bool, int64, float64, string, []byte • Timestamp - nano epoch

Slide 40

Slide 40 text

Writing Data curl -XPOST 'http://localhost:8086/write' -d '...'

Slide 41

Slide 41 text

Writing Data { "database": "mydb", "retentionPolicy": "30d", "points": [ { "name": "cpu_load", "tags": { "host": "server01", "region": "us-west" }, "timestamp": "2009-11-10T23:00:00Z", "fields": { "value": 0.64 } } ] } Measurement Tags Fields

Slide 42

Slide 42 text

Querying curl -G 'http://localhost:8086/query' --data-urlencode "q=..."

Slide 43

Slide 43 text

SQL-ish query language

Slide 44

Slide 44 text

SELECT value FROM cpu WHERE host = 'serverA' { "results":[ { "query": "SELECT value FROM cpu WHERE host='serverA'", "series": [ { "name": "cpu", "tags": { "host": "serverA" }, "columns": ["time", "value"], "values": [ ["2009-11-10T23:00:00Z", 22.1], ["2009-11-10T23:00:10Z", 25.2] ] } ] } ] } QUERY: RESULTS:

Slide 45

Slide 45 text

SELECT value FROM cpu WHERE host = ‘serverA'OR host = 'serverB' QUERY: { "series": [ { "name": "cpu", "tags": { "host": "serverA" }, "columns": ["time", "value"], "values": [] }, { "name": "cpu", "tags": { "host": "serverB" }, "columns": ["time", "value"], "values": [] } ] } SERIES IN RESULT:

Slide 46

Slide 46 text

SELECT percentile(90, value) FROM cpu WHERE time > now() - 4h GROUP BY time(10m), region QUERY: [ { "name": "cpu", "tags": { "region": "us-west" }, "columns": ["time", "percentile"], "values": [] }, { "name": "cpu", "tags": { "region": "us-east" }, "columns": ["time", "percentile"], "values": [] } ] SERIES IN RESULT:

Slide 47

Slide 47 text

Multiple aggregates SELECT mean(value), percentile(90, value), min(value), max(value) FROM cpu WHERE host='serverA' AND time > now() - 48h GROUP BY time(1h)

Slide 48

Slide 48 text

Return every series in CPU SELECT mean(value) FROM cpu WHERE time > now() - 48h GROUP BY time(1h), *

Slide 49

Slide 49 text

Discovery based on tags

Slide 50

Slide 50 text

{ "results":[ { "query": "SHOW MEASUREMENTS", "series": [ { "name": "measurements", "columns": ["name"], "values": [ ["cpu"], ["memory"], ["network"] ] } ] } ] }

Slide 51

Slide 51 text

{ "results":[ { "query": "SHOW SERIES", "series": [ { "name": "cpu", "columns": ["id", "region", "host"], "values": [ [1, "us-west", "serverA"], [2, "us-east", "serverB"] ] } ] } ] }

Slide 52

Slide 52 text

{ "query": "SHOW MEASUREMENTS WHERE service='redis'", "series": [ { "name": "measurements", "name": "series", "columns": ["measurement"], "values": [ ["key_count"], ["connections"] ] } ] }

Slide 53

Slide 53 text

{ "query": "SHOW TAG KEYS from cpu", "series": [ { "name": "keys", "columns": ["key"], "values": [ ["region"], ["host"] ] } ] }

Slide 54

Slide 54 text

{ "query": "SHOW TAG VALUES WITH KEY = service", "series": [ { "name": "series", "columns": ["service"], "values": [ ["redis"], ["apache"] ] } ] }

Slide 55

Slide 55 text

{ "query": "SHOW TAG VALUES FROM cpu WITH KEY = service", "series": [ { "name": "series", "columns": ["service"], "values": [ ["redis"], ["apache"] ] } ] }

Slide 56

Slide 56 text

Much more • Retention policies • Automatic downsampling and aggregation • Clustering

Slide 57

Slide 57 text

Grafana Dashboards

Slide 58

Slide 58 text

Thank you! Paul Dix @pauldix paul@influxdb.com