Slide 1

Slide 1 text

ϕΠζ౷ܭϞσϦϯά Chapter 10 @todesking

Slide 2

Slide 2 text

ϕΠδΞϯϞσϧൺֱ • ؍ଌ͞ΕͨσʔλΛઆ໌͢ΔͨΊͷɺෳ਺ͷϞσϧ͕ߟ͑ ΒΕΔ • ͲͷϞσϧ͕ΑΓ΋ͬͱ΋Β͍͔͠? • ࠓ·ͰֶΜͰ͖ͨϕΠζϞσϦϯάʹΑͬͯɺʮϞσϧΛ ൺֱ͢ΔϞσϧʯΛߏ੒͢Δ͜ͱ͕Ͱ͖Δ

Slide 3

Slide 3 text

10.1 ҰൠࣜͱϕΠζϑΝΫλʔ • ؍ଌ͞Εͨσʔλ(D)Λઆ໌͢Δ2ͭͷϞσϧΛߟ͑Δ • ֤Ϟσϧ͸ɺࣄલ෼෍P(θ)ɺ໬౓P(D|θ)͓Αͼύϥϝʔλθ͔ΒͳΔ D θ1 θ1 ∼ P1 (θ1 ) D ∼ P1 (D|θ1 ) D θ2 θ2 ∼ P2 (θ2 ) D ∼ P2 (D|θ2 )

Slide 4

Slide 4 text

Ϟσϧͷந৅දݱ • Ϟσϧ͕ෳ਺ͷม਺͔Βߏ੒͞Ε͍ͯͯ΋ɺந৅Խ͢Ε͹ θ, P(θ), P(D|θ) ͰදݱͰ͖Δ(ಠࣗݚڀ) D θ1 θ = (φ1 , φ2 , φ3 ) D = (X, Y) P(θ) = P(φ1 , φ2 , φ3 ) P(D|θ) = P(X, Y|φ1 , φ2 , φ3 ) X φ1 φ3 Y φ2

Slide 5

Slide 5 text

ϞσϧൺֱͷͨΊͷϞσϧ • Ϟσϧબ୒ม਺mΛಋೖͯ͠ɺ2ͭͷϞσϧΛ·ͱΊΔ • ϞσϧൺֱͷͨΊͷϞσϧͱͳΔ • fig 10.1Ͱ͸ɺ໬౓ؔ਺͕ผʑͷέʔε(தԝ)ɺڞ௨͍ͯ͠Δέʔε(ӈ)ɺͦ ͷҰൠԽ͍Δͷ͔?ͷέʔε(ࠨ)͕දݱ͞Ε͍ͯΔ • Լਤ͸தԝͷέʔεʹ૬౰ D θ1 θ1 ∼ P1 (θ1 ) θ2 θ2 ∼ P2 (θ2 ) m m ∼ P(m) P(D|θ1 , m = 1) = P1 (D|θ1 ) P(D|θ2 , m = 2) = P2 (D|θ2 )

Slide 6

Slide 6 text

ϞσϧൺֱͷͨΊͷϞσϧ • ͜ͷϞσϧͷύϥϝʔλಉ࣌෼෍͸ҎԼʹͳΔ • Ϟσϧ਺ΛM, ύϥϝʔλ{θ_1, ..., θ_M} Λ Θ ͱͨ͠ P(Θ, m|D) = P(D|Θ, m)P(Θ, m) ∑ m ∫ dθm P(D|Θ, m) = ∏ m ∫ dθm Pm (D|θm , m)Pm (θm )P(m) ∑ m ∏ m ∫ dθm Pm (D|θm , m)Pm (θm )P(m) P(D|Θ) ͕ ∏ m Pm (D|θm )Pm (θm |m)P(m)ʹͳΔͷ͕ॏཁΒ͍͠

Slide 7

Slide 7 text

P(m|D) • ͜ͷϞσϧΛ࢖͏͜ͱͰɺσʔλD͕༩͑ΒΕͨͱ͖Ϟσ ϧm͕࢖ΘΕΔ֬཰P(m|D)ΛٻΊΔ͜ͱ͕Ͱ͖Δ P(m|D) = P(D|m)P(m) ∑ m P(D|m)P(m) P(D|m) = ∫ dθm Pm (D|θm )Pm (θm )

Slide 8

Slide 8 text

ࣄޙΦοζͱϕΠζϑΝΫλ • ϞσϧؒͰP(m|D)ͷൺΛऔΕ͹ɺͲͪΒͷϞσϧ͕΋ͬͱ ΋Β͍͔͠Θ͔Δ=ࣄޙΦοζ P(m = 1|D) P(m = 2|D) = P(D|m = 1) P(D|m = 2) P(m = 1) P(m = 2) • ໬౓P(m|D)ͷൺΛϕΠζϑΝΫλ(BF)ͱ͍͏ • ࣄޙΦοζ=BF * ࣄલ֬཰ͷൺ

Slide 9

Slide 9 text

10.2 2ͭͷίΠϯ޻৔ͷྫ • ίΠϯΛNճ౤͛ͨΒද͕zճग़ͨɻ2ͭͷ޻৔ͷͲͪΒ͔Βདྷ ͨίΠϯ͔? • ͦΕͧΕͷ޻৔ΛϞσϧͱΈͳͯ͠ɺϞσϧൺֱ͢Δ • fig 10.1ʹ͓͚Δӈͷਤ=໬౓ؔ਺͕ಉ͡Ͱ͋Δέʔεʹ૬౰ z θ1 θ1 ∼ Beta(ω = 0.25,κ = 12) θ2 m m ∼ Categorical(0.5,0.5) z ∼ Binomial(θm , N) θ2 ∼ Beta(ω = 0.75,κ = 12) N

Slide 10

Slide 10 text

P(m|D)ͷൺΛٻΊΔ: ղੳղ • ࣄલ෼෍͕Beta(a, b)Ͱ༩͑ΒΕΔͱ͖ɺP(z,N)͸ҎԼͷࣜ ʹͳΔ(6ষͰઆ໌ࡁΈ) • আࢉ࣌͸Ξϯμʔϑϩʔ๷ࢭͷͨΊʹlogΛऔΔͱ͍͍ • Rʹ͸ϕʔλ෼෍ͷlogΛٻΊΔlbetaؔ਺͕͋Δ P(z, N) = B(z, a, N − z + b) B(a, b) = exp(log B(z + a, N − z + b) − logB(a, b))

Slide 11

Slide 11 text

P(m|D)ͷൺΛٻΊΔ: ղੳղ • ·ͱΊΔͱɺP(D|m)͸ҎԼͱͳΔ P(D|m) = P(z, N|m) = B(z, am , N − z + bm ) B(am , bm ) am = ωm (κ − 2) + 1 bm = (1 − ωm )(κ − 2) + 1 ω1 = 0.25 ω2 = 0.75

Slide 12

Slide 12 text

P(m|D)ͷൺΛٻΊΔ: ղੳղ • P(D|m=1) ≒ 0.000499 • P(D|m=2) ≒ 0.002339 • BF = P(D|m=1)/P(D|m=2) ≒ 0.213 ͱͳΔ • P(m = 1) = P(m = 2) = 0.5 ͷͱ͖ɺ P(m = 1|D) P(m = 2|D) = P(D|m = 1) P(D|m = 2) = 0.213 P(m = 2|D) = 1 − P(m = 1|D)ΑΓ P(m = 1|D) 1 − P(m = 1|D) = 0.213 P(m = 1|D) = 0.176 P(m = 2|D) = 0.824

Slide 13

Slide 13 text

P(m|D)ͷൺΛٻΊΔ: άϦουۙࣅ • m͸{0, 1}ͷ஋ΛऔΔ཭ࢄύϥϝʔλ • ਤ͕ॻ͖ʹ͍͘ͷͰɺmͷ͔ΘΓʹωΛಋೖ • ω͸0.25ͱ0.75ʹϐʔΫΛ࣋ͭ෼෍ɻ֤Ϟσϧͷ࠷ස஋ ω_{1,2}ʹରԠɻ

Slide 14

Slide 14 text

• ӈ্: ωͷ෼෍ɻ2ͭͷࢁ͕ಉ͡ߴ͞Ͱ͋Δ=2ͭͷ஋͸౳֬཰ • ࠨԼ: θͷपล෼෍ɻϞσϧʹରԠͨ͠2ͭͷࢁ͕͋Δ • ӈԼ: ω={0.75,0.25}ʹ͓͚Δθͷ෼෍ άϦουۙࣅ: ࣄલ෼෍

Slide 15

Slide 15 text

• ӈ্ͷP(ω|D)ʹ͓͍ͯɺߴ͞ͷൺ͸໿5:1Ͱ͋Δ: P(m|D)ͷൺʹରԠ • ղੳղͰ͸mͷΈʹ஫໨͕ͨ͠ɺࠓճͷۙࣅͰ͸θͷ෼෍͕ՄࢹԽ͞Εͨ άϦουۙࣅ: ࣄޙ෼෍

Slide 16

Slide 16 text

10.3 MCMCΛ༻͍ͨղ๏ • ͦΕͧΕͷmʹ͍ͭͯP(D|m)Λܭࢉ͢Δํ๏ • Ϟσϧൺֱ༻ͷϞσϧΛ௚઀ϞσϦϯά͠ɺmͷࣄޙ෼෍ ΛٻΊΔํ๏

Slide 17

Slide 17 text

10.3.1 MCMC: Ϟσϧ͝ͱ • ͦΕͧΕͷmʹ͍ͭͯɺP(D|m)Λܭࢉ͢Δ • JAGSͰθ_mΛαϯϓϦϯάͯ͠ɺ݁Ռʹରͯ͠Ή͔ͣ͠ ͍͚͍͞ΜΛ͢ΔͱP(D|m)ʹͳΔ

Slide 18

Slide 18 text

Ϟσϧ͝ͱͷपล໬౓ܭࢉ • P(D)͸P(θ)͔ΒαϯϓϦϯάͨ͠θ_nΛ࢖ͬͯɺΣP(D|θ) / N ͰۙࣅՄೳ͕ͩɺ࣮༻తͰͳ͍ • P(θ)͸֦ࢄ͍ͯ͠Δ • ΄ͱΜͲͷαϯϓϧʹஔ͍ͯɺP(D|θ)͸ඇৗʹখ͍͞ • ࣄޙ෼෍P(θ|D)͔ΒαϯϓϦϯάͨ͠θΛ࢖ͬͯP(D)Λಋ ग़͍ͨ͠

Slide 19

Slide 19 text

Ϟσϧ͝ͱͷपล໬౓ܭࢉ P(θ|D) = P(D|θ)P(θ) P(D) 1 P(D) = P(θ|D) P(D|θ)P(θ) ೚ҙͷ֬཰෼෍h(θ)Λಋೖͯ͠ = P(θ|D) P(D|θ)P(θ) ∫ dθ′h(θ′) = ∫ dθ′ P(θ|D) P(D|θ)P(θ) h(θ′) ೚ҙͷθʹ͍ͭͯɺ P(θ|D) P(D|θ)P(θ) ͷ஋͸ಉ͡ͳͷͰ = ∫ dθ′ P(θ′|D) P(D|θ′)P(θ′) h(θ′) ≈ N ∑ θi ∼P(θ|D) h(θi ) P(D|θi )P(θi )

Slide 20

Slide 20 text

Ϟσϧ͝ͱͷपล໬౓ܭࢉ • h(θ)ͱͯ͠͸೚ҙͷ֬཰෼෍͕࢖͑Δ͕ɺ਺஋ܭࢉͷ౎߹ ্ɺ෼฼ͱࣅͨܗঢ়Ͱ͋Δ͜ͱ͕๬·͍͠ • ෳࡶͳϞσϧʹ͓͍ͯɺͦͷΑ͏ͳhΛٻΊΔͷ͸೉͍͠ • 10.3.1.1ʹ͓͍ͯ͸ɺαϯϓϦϯάͨ͠θΛݩʹhͷܗঢ়Λ ܾΊ͍ͯΔ N ∑ θi ∼P(θ|D) h(θi ) P(D|θi )P(θi )

Slide 21

Slide 21 text

N 10.3.2 MCMC: ֊૚Ϟσϧ • ࠓճͷέʔεͰ͸ɺ֤Ϟσϧͷࣄલ෼෍͓Αͼ໬౓෼෍͕ಉؔ͡ ਺ͰදͤΔ • θΛαϯϓϦϯά͢ΔࡍʹɺmΛߟྀͯ͠ωͷ஋Λม͑Ε͹Α͍ y θ m ω1 = 0.25 ω2 = 0.75 m ∼ Categorial(0.5,0.5) θ ∼ Beta(ω = ωm , κ = 12) yi ∼ Bern(θ) 2 ω

Slide 22

Slide 22 text

MCMCͷ݁Ռ • ্͕ࣄલɺԼ͕ࣄޙ • mͷࣄޙ෼෍͸ɺଞͷख๏Ͱͷ݁ ՌͱҰக͍ͯ͠Δ • m=1ʹ͓͚Δθͷࣄޙ෼෍͸ɺα ϯϓϧશମͷ18%͔͠࢖ΘΕͯ ͍ͳ͍͜ͱʹ஫ҙ • m=2ʹ͓͚Δθͷࣄޙ෼෍͸ɺ࢒ Γ82%͕࢖ΘΕ͍ͯΔ • ࢧ࣋͞Εͳ͔ͬͨϞσϧʹؔ͢Δ αϯϓϧ͸গͳ͘ͳΔ

Slide 23

Slide 23 text

2 10.3.2.1 ΋ͬͱҰൠతͳํ๏ • ͜ͷࣄྫͰ͸ɺͨ·ͨ·ࣄલ෼෍ؔ਺͕શϞσϧͰಉ͡ • Ұൠతʹ͸ɺҟͳΔؔ਺Λ࢖͍͍ͨ • ͷͰɺ෼͚ͯهड़͢Δͱ͜͏ͳΔ • આ໌ͷ౎߹্ɺࣄલ෼෍ͷύϥϝʔλ͸લͷྫͱҧ͍ͬͯΔ N y θ m ω1 = 0.10 ω2 = 0.90 m ∼ Categorial(0.5,0.5) θ1 ∼ Beta(ω = ω1 , κ = 20) θ2 ∼ Beta(ω = ω2 , κ = 20) yi ∼ Bern(θm ) ω

Slide 24

Slide 24 text

݁Ռ • ਤ10.5ࢀর • ҰԠαϯϓϦϯάͰ͖ͯ͸͍Δ͕…… • ESS(༗ޮαϯϓϧαΠζ)<500 • mͷࣗݾ૬͕ؔҟৗʹߴ͍

Slide 25

Slide 25 text

ࣗݾ૬ؔͷߴ͞ • θ1(m=2)͓Αͼθ2(m=1)͸ࣄલ෼෍ͷΈʹै͏ͷʹରͯ͠ɺθ1(m=1) ͓Αͼθ2(m=2)͸ࣄલ෼෍ٴͼyʹӨڹΛड͚Δ • ͜ͷҧ͍͕mͷαϯϓϦϯάʹѱӨڹΛٴ΅͢ θ1(m=1) θ1(m=2) θ2(m=1) θ2(m=2)

Slide 26

Slide 26 text

mʹΑΔθͷมԽ • JAGS͸gibbs sampling͍ͯ͠ΔͷͰɺύϥϝʔλΛҰݸ ͣͭαϯϓϦϯά͍ͯ͘͠ θ(1) 1 ∼ P(θ1 |θ(0) 2 , m(0), D) θ(1) 2 ∼ P(θ2 |θ(1) 1 , m(0), D) m(1) ∼ P(m|θ(1) 1 , θ(1) 2 , D) θ(2) 1 ∼ P(θ1 |θ(1) 2 , m(1), D) θ(2) 2 ∼ P(θ2 |θ(2) 1 , m(1), D) m(2) ∼ P(m|θ(2) 1 , θ(2) 2 , D) ⋯

Slide 27

Slide 27 text

αϯϓϦϯάաఔ P(θ1 , θ2 , m|D) = { P1 (D|θ1 )P1 (θ1 )P2 (θ2 )P(m = 1) if m = 1 P2 (D|θ2 )P1 (θ1 )P2 (θ2 )P(m = 2) if m = 2 m(1) = 1 θ(1) 1 ∼ P(θ1 |θ(0) 2 , m = 1,D) = P(θ1 , θ(0) 2 , m = 1|D) P(θ(0) 2 , m = 1|D) P(θ(0) 2 , m = 1|D) = P2 (θ(0) 2 )P(m = 1) ∫ dθ1 P1 (D|θ1 )P1 (θ1 )ΑΓ = P1 (D|θ1 )P1 (θ1 ) ∫ dθ1 P1 (D|θ1 )P1 (θ1 )

Slide 28

Slide 28 text

αϯϓϦϯάաఔ θ(1) 2 ∼ P(θ2 |θ(1) 1 , m = 1,D) = P(θ(1) 1 , θ2 , m = 1|D) P(θ(1) 1 , m = 1|D) P(θ(0) 1 , m = 1|D) = P1 (D|θ(1) 1 )P1 (θ(1) 1 )P(m = 1) ∫ dθ2 P2 (θ2 )ΑΓ = P2 (θ2 ) P(θ1 , θ2 , m|D) = { P1 (D|θ1 )P1 (θ1 )P2 (θ2 )P(m = 1) if m = 1 P2 (D|θ2 )P1 (θ1 )P2 (θ2 )P(m = 2) if m = 2

Slide 29

Slide 29 text

αϯϓϦϯάաఔ m(2) ∼ P(m|θ(1) 1 , θ(1) 2 , D) = P(θ(1) 1 , θ(1) 2 , m|D) P(θ(1) 1 , θ(1) 2 |D) P(θ1 , θ2 , m|D) = P(D|θ1 , θ2 , m) P(θ1 , θ2 , m) P(D|θ1 , θ2 , m) = { P1 (D|θ1 )P1 (θ1 )P2 (θ2 )P(m = 1) if m = 1 P2 (D|θ2 )P1 (θ1 )P2 (θ2 )P(m = 2) if m = 2 P(θ1 , θ2 , m) = P1 (θ1 )P2 (θ2 )P(m) = { P(D|θ1 ) if m = 1 P(D|θ2 ) if m = 2

Slide 30

Slide 30 text

αϯϓϦϯάաఔ • ࣍ͷm͕{1,2}ͷͲͪΒʹͳΔ͔͸ɺP(D|θ1)/P(D|θ2)ͷൺͰܾ·Δ • θ1ͷ΄͏͸P(D|θ1)P(θ1)͔Βੜ੒͞Ε͍ͯΔˠP(D|θ1)͕େʹͳΔ ֬཰͕ߴ͍ • θ2͸P(θ2)͔Βੜ੒͞Ε͍ͯΔˠP(D|θ2)͸খʹͳΔͩΖ͏ • ݁Ռͱͯ͠ɺm͸1ʹཹ·Δ֬཰͕ߴ͍ m(1) = 1 θ(1) 1 ∼ P(θ1 |m = 1,D) ∝ P1 (D|θ1 )P1 (θ1 ) θ(1) 2 ∼ P1 (θ2 ) m(2) ∼ P(m|θ(1) 1 , θ(1) 2 , D) = { P(D|θ1 ) if m = 1 P(D|θ2 ) if m = 2

Slide 31

Slide 31 text

ٙࣅࣄલ෼෍ʹΑΔ αϯϓϦϯάվળ • ໰୊: θͷ෼෍͸mͷ஋ʹΑΒͣҰఆͰ͋ͬͯ΄͍͠ • ղܾ: P(θ_i|m=i)ʹ͍ۙ෼෍Λ༻ҙͯ͠ɺθ_i(i≠m)ʹ͍ͭͯ ͸ͦͷ෼෍͔ΒαϯϓϦϯά͢Δ

Slide 32

Slide 32 text

ٙࣅࣄલ෼෍ͷར༻ • ٙࣅࣄલ෼෍Λ࢖Θͳ͍ϞσϧΛࣄલʹ࣮ߦ͓͖ͯ͠ɺٙࣅࣄલ෼෍ ͷύϥϝʔλΛಘΔ • બ͹ΕͨϞσϧͷθ͸ී௨ʹαϯϓϦϯά͢Δ͕ɺબ͹Εͳ͔ͬͨํ͸ ٙࣅࣄલ෼෍͔ΒαϯϓϦϯά͢Δ ωi,j , κi,j = { true prior if i = j pseudo prior if i ≠ j m ∼ Categorial(0.5,0.5) θ1 ∼ Beta(ω = ω1,m , κ = κ1,m ) θ2 ∼ Beta(ω = ω2,m , κ = κ2,m ) yi ∼ Bern(θm ) 2 2 N y θ m ω

Slide 33

Slide 33 text

݁Ռ • θͷ෼෍͸m͕มΘͬ ͯ΋͍͍ͩͨಉ͡ܗঢ় • mͷࣗݾ૬͕ؔେ෯ʹ Լ͕ΓɺESS=10000

Slide 34

Slide 34 text

ࢧ࣋͞Εͳ͍Ϟσϧͷαϯϓ ϧ͕গͳ͍໰୊ • mͷࣄޙ෼෍ʹ͓͍ͯɺϞσϧ1͕બ͹ΕΔͷ͸8% • ͭ·ΓϞσϧ1ͷύϥϝʔλͰ͋Δθ1ͷαϯϓϧ਺͕શମ ͷ8% • αϯϓϧ਺Λ૿΍ͨ͢Ίʹ͸ɺνΣʔϯͷ௕͞Λ૿΍͢ (ܭࢉ࣌ؒʹѱӨڹ)΄͔ʹɺϞσϧ͕ΑΓฏ౳ʹબ͹ΕΔ Α͏P(m)Λௐ੔͢Δ(m=1ʹόΠΞεΛֻ͚Δ)ํ๏͕͋Δ • P(m)Λ͍ͬͯ͡γϛϡϨʔγϣϯͨ͠৔߹Ͱ΋ɺฏ౳ͳ ࣄલ෼෍ʹ͓͚ΔࣄޙΦοζΛٻΊΒΕΔ BF = P(m = 1|D) P(m = 2|D) P(m = 2) P(m = 1)

Slide 35

Slide 35 text

10.3.3 Ϟσϧ͝ͱʹҟͳΔ ໬౓ؔ਺ͷར༻ • P(D|θ)Λnoise distributionͱ΋͍͏ͦ͏Ͱ͢ • Ϟσϧ͝ͱʹҟͳΔP(D|θ)Λ࢖͍͍ͨͱ͖͸ɺ8.6.1Ͱ঺հ͠ ͨςΫχοΫ͕࢖͑Δ • spy = if m = 1 then PDF(D|θ1) else PDF(D|θ2) / C • 1 ~ Bern(spy) • Ϟσϧͷಉ࣌֬཰ʹspyΛ৐͡Δ͜ͱʹͳΔ • C(େ͖Ίͷఆ਺)Ͱׂ͍ͬͯΔͷ͸spy͕1Λ௒͑ͳ͍Α͏ʹ • ૬ରతͳ஋͕ॏཁͳͷͰɺspyͷ۩ମతͳ஋͸ؔ܎ͳ͍ • STANͩͱ΋ͬͱ௚ײతʹॻ͚ͨؾ͕͢Δ(increment_log_prob ؔ਺ͰϞσϧͷ֬཰ΛՃࢉͰ͖Δ)

Slide 36

Slide 36 text

10.4: Ϟσϧฏۉ • P(y)Λ༧ଌ͍ͨ͠ • Ϟσϧൺֱͷ݁ՌϞσϧb͕উ͍ͬͯͨͳΒɺͦͷϞσϧͰ༧ ଌ͢Δ͜ͱ͕Ͱ͖Δ P( ̂ y|D, m = b) = ∫ dθb Pb ( ̂ y|θb , m = b)Pb (θb |D, m = b) • Ϟσϧ͝ͱʹ֬৴౓ׂ͕Γ౰ͯΒΕ͍ͯΔͷͰɺͦͷॏΈ Λ࢖ͬͯશϞσϧͷฏۉΛऔΔ͜ͱ͕Ͱ͖Δ P( ̂ y|D) = ∑ m ∫ dθm Pm ( ̂ y|θm , m)Pm (θm |D, m)P(m|D)

Slide 37

Slide 37 text

10.5: Ϟσϧͷෳࡶ౓ • ࣄલ෼෍ʹ͓͍ͯɺύϥϝʔλͷऔΓ͏Δൣғ͕޿͍Ϟσ ϧΛʮෳࡶʯͳϞσϧͱݴ͍ͬͯΔͬΆ͍ • ୯ʹύϥϝʔλ਺͕ଟ͍Ϟσϧͱ͍͏ҙຯͰ͸ͳ͍(ҎԼ ͷྫͰ΋ɺύϥϝʔλ਺͸ಉ͡) • ҰൠతʹɺෳࡶͳϞσϧͷ΄͏͕σʔλ΁ͷద߹͸༗ར • ޿͍ύϥϝʔλൣғͷϞσϧͷ΄͏͕ɺσʔλʹద߹ ͢Δύϥϝʔλͷ૊Έ߹ΘͤΛؚΉՄೳੑ͕ߴ͍ͷͰ • ͔͠͠աద߹͸ආ͚͍ͨ

Slide 38

Slide 38 text

Ϟσϧൺֱͱෳࡶ͞ • ෳࡶͳϞσϧ͸ɺࣄલ෼෍͕શମʹബ͘ࢄΒ͹͍ͬͯΔ • Մೳͳύϥϝʔλͷ૊Έ߹Θ͕ͤଟ͍=Ұݸ͋ͨΓͷ֬ ཰͕௿͍ • ୯७ͳϞσϧ͸ɺࣄલ෼෍͕ް͍ • ϕΠζϞσϧൺֱʹ͓͍ͯ͸ɺࣄલ෼෍ͷް͕͞ࣄޙ֬཰ ʹӨڹΛ༩͑Δ

Slide 39

Slide 39 text

Ϟσϧൺֱͱෳࡶ͞ • ίΠϯ౤͛ͷϞσϧ: θ ~ Beta(a, b) Λߟ͑Δ • 1. ϑΣΞͩΖ͏Ϟσϧ: (a,b) = (500, 500) • 2. ͢΂ͯى͜Γ͏ΔϞσϧ: (a, b) = (1, 1) • 20ճத15ճද͕ग़ͨέʔεͰ͸ɺϞσϧ2͕উͭ • 20ճத11ճද͕ग़ͨΒϞσϧ1͕উͭ • ࣄલ෼෍ͷް͍෦෼Ͱσʔλʹద߹Ͱ͖͔͕ܾͨΊख

Slide 40

Slide 40 text

10.5.1 Ϟσϧൺֱͷ஫ҙ • ͋ΔϞσϧ(full modelͱݺͿ)ʹରͯ͠ɺύϥϝʔλͷൣғ ʹ੍໿ΛՃ͑ͨϞσϧΛߟ͑Δ͜ͱ͕Ͱ͖Δ • ύϥϝʔλaͷ஋͸bͱಉ͡ɺͳͲ • full modelͷ΄͏͕ෳࡶͳͷͰɺ੍ݶϞσϧ͕ಉ͘͡Β͍ Α͘σʔλΛදݱͰ͖ΔͳΒɺϕΠδΞϯϞσϧൺֱͰ͸ ੍ݶϞσϧ͕બ͹ΕΔͩΖ͏ • 9ষͷ໺ٿબखϞσϧʹ͓͍ͯɺ಺໺खͷೳྗ͸͢΂ͯಉ ͡Ͱ͋Δͱ͍͏੍ݶΛ͔͚ͨϞσϧ͕ߟ͑ΒΕΔ

Slide 41

Slide 41 text

Ϟσϧൺֱͷ஫ҙ఺ • ߟ͑ΒΕΔ੍໿Λશ෦ࢼͦ͏ͱ͢Δͷ͸΍Ίͨ΄͏͕͍ ͍ • 9ύϥϝʔλʹಉ஋੍໿Λֻ͚Δ৔߹ɺ૊Έ߹Θͤ͸ 21147௨Γ • ੍໿Λ͔͚Δͱ͍͏͜ͱ͸ɺಛఆͷύϥϝʔλͷ૊Έ ߹Θͤʹ͍ͭͯࣄલ෼෍Λ0ʹ͢Δͱ͍͏͜ͱ • ͨͱ͑ϞσϧൺֱͰউͭͱͯ͠΋ɺ๬·͘͠ͳ͍͔΋ ͠Εͳ͍

Slide 42

Slide 42 text

10.6 ࣄલ෼෍ʹහײ • ϕΠζϑΝΫλʔ͸∫dθ P(D|θ)P(θ) Λ࢖͍ͬͯΔͷͰɺࣄ લ෼෍ʹහײ • ྫ: ෼ࢠଆͷϞσϧͷࣄલ෼෍ΛBeta(1,1)͔Β Beta(0.01,0.01)ʹͨ͠ΒɺBF͕0.12͔Β5.72ʹ • Ϟσϧͷ95% HDI͸ࣄલ෼෍ͷӨڹΛ΄΅ड͚ͳ͍ • ॆ෼ͳྔͷσʔλ͕͋ΔͳΒɺϕΠζਪఆ͸Ϟσϧൺֱͱ ҧͬͯࣄલ෼෍ͷӨڹΛड͚ʹ͍͘

Slide 43

Slide 43 text

10.6.1 ֤Ϟσϧͷࣄલ෼෍ʹ͸ ฏ౳ʹ৘ใΛ༩͑Δ΂͖ • ࣄલ෼෍ͷҧ͍͕BFʹӨڹΛ༩͑ΔɻͲ͏͢΂͖͔ • σʔλʹج͍ͮͯࣄલ෼෍Λܾఆ͢Δ • ֤ϞσϧͰɺಉ͡σʔλʹج͍ܾͮͯΊΔ • ྫ: 100ճத65ճද͕ग़ͨίΠϯ౤͛ • σʔλͷ10%(10ճத6ճද)Λ࢖ͬͯࣄલ෼෍Λิਖ਼ • Beta(1, 1) → Beta(1+6, 1+4) • BF͕҆ఆ͢Δ