Slide 1

Slide 1 text

Jong Chul Ye Deep Convolutional Framelets: A general deep learning framework for inverse problems Bio-Imaging, Signal Processing, & Learning (BISPL) Dept. Bio & Brain Engineering Dept. Mathematical Sciences KAIST, Korea

Slide 2

Slide 2 text

• Successful demonstration of deep learning for various image reconstruction problems – Low-dose x-ray CT (Kang et al, Chen et al, Wolterink et al, Ye et al) – Sparse view CT (Jin et al, Han et al, Adler et al) – Interior tomography (Han et al) – Stationary CT for baggage inspection (Han et al) – CS-MRI (Hammernik et al, Schlemper et al, Yang et al, Lee et al, Zhu et al) – US imaging (Yoon et al ) – Diffuse optical tomography (Yoo et al) – Elastic tomography (Yoo et al) – Optical diffraction tomography (Kamilov et al) – etc • Advantages – Very fast reconstruction time – Significantly improved results Deep Learning for Inverse Problems

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

No content

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

6

Slide 8

Slide 8 text

WHY DEEP LEARNING WORKS FOR RECON ? DOES IT CREATE ANY ARTIFICIAL FEATURES ?

Slide 9

Slide 9 text

Too Simple to Analyze..? Convolution & pooling à stone age tools of signal processing What do they do ?

Slide 10

Slide 10 text

Paradox and Mysteries Residual Network Clean image Standard Network Zhang, K., et al, IEEE TIP, 2017.

Slide 11

Slide 11 text

Dark Age of Applied Mathematics ?

Slide 12

Slide 12 text

• What is the role of the nonlinearity such as rectified linear unit (ReLU) ? • Why do we need a pooling and unpooling in some architectures ? • Why do some networks need fully connected layers whereas the others do not ? • What is the role of by-pass connection or residual network ? • What is the role of the filter channels in convolutional layer ? Many Mysteries…

Slide 13

Slide 13 text

Our Proposal: Deep Learning == Deep Convolutional Framelets • Ye et al, “Deep convolutional framelets: A general deep learning framework for inverse problems”, SIAM Journal Imaging Sciences, 11(2), 991-1048, 2018.

Slide 14

Slide 14 text

Matrix Representation of CNN Figure courtesy of Shoieb et al, 2016

Slide 15

Slide 15 text

Hankel Matrix: Linear Lifting to Higher Dimensional Space

Slide 16

Slide 16 text

Why we are excited about Hankel matrix ? T -T 0 n1 -n1 0 * FRI Sampling theory (Vetterlie et al) and compressed sensing

Slide 17

Slide 17 text

  1 2 3 4 5 6 7 8 9 -1 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 12 2 3 4 5 6 7 8 9 12 13 3 4 5 6 7 8 9 10 10 10 10 0 11 11 11 1 2 3 4 5 Finite length convolution Matrix Representation * ALOHA : Annihilating filter based LOw rank Hankel matrix Approach * Jin KH et al. IEEE TCI, 2016 * Jin KH et al.,IEEE TIP, 2015 * Ye JC et al. IEEE TIT, 2016 Annihilating filter-based low-rank Hankel matrix

Slide 18

Slide 18 text

Missing elements can be found by low rank Hankel structured matrix completion Nuclear norm Projection on sampling positions min m kH(m)k⇤ subject to P⌦(b) = P⌦(f) RankH(f) = k * Jin KH et al IEEE TCI, 2016 * Jin KH et al.,IEEE TIP, 2015 * Ye JC et al., IEEE TIT, 2016 m Annihilating filter-based low-rank Hankel matrix

Slide 19

Slide 19 text

18. APR. 2015. 18 * Image Inpainting Results Jin et al, IEEE TIP, 2015

Slide 20

Slide 20 text

19 Jin et al, IEEE TIP, 2015

Slide 21

Slide 21 text

Key Observation Data-Driven Hankel matrix decomposition => Deep Learning • Ye et al, “Deep convolutional framelets: A general deep learning framework for inverse problems”, SIAM Journal Imaging Sciences, 11(2), 991-1048, 2018.

Slide 22

Slide 22 text

Hd(f) = U⌃V T : Non-local basis : Local basis Convolution Framelets (Yin et al; 2017) > = I > = I Hd(f)

Slide 23

Slide 23 text

Hd(f) Hd(f) = ˜ T ˜ T C C = T Hd(f) C = T (f ~ ) Encoder: ˜ T = I ˜ = PR(V ) Hd(f) = U⌃V T Unlifting: f = (˜C) ~ ⌧(˜ ) : Non-local basis : Local basis : Frame condition : rank condition convolution pooling un-pooling convolution : User-defined pooling : Learnable filters Hpi (gi) = X k,l [Ci]kl e Bkl i Decoder: Deep Convolutional Framelets (Y, Han, Cha; 2018)

Slide 24

Slide 24 text

Single Resolution Network Architecture

Slide 25

Slide 25 text

Multi-Resolution Network Architecture

Slide 26

Slide 26 text

Conic fi [Ci]kl 0 Hpi (gi) = X k,l [Ci]kl e Bkl i Hpi (fi) ' Linear Lifting Geometry of CNN gi Linear Un-lifting Ci(fi) Ci(fi) 0 i ⇣i ⇣ e i ⌘

Slide 27

Slide 27 text

fi [Ci]kl 0 Hpi (gi) = X k,l [Ci]kl e Bkl i Hpi (fi) ' Lifting Geometry of Residual CNN Ci(fi) Ci(fi) 0 i ⇣i ⇣ e i ⌘ gi Un-lifting

Slide 28

Slide 28 text

Deep CNN Lifting Un-lifting Conic Lifting Un-lifting Lifting Un-lifting

Slide 29

Slide 29 text

fi Nonlinear Lifting to Feature space Comparison with Kernel PCA gi Nonlinear Pre-Image calculation (fi) AAAB+nicbVBNS8NAFHzxs9avWI9egkWol5KIoN6KXjxWMLbQhLDZbtqlm03Y3Ygl5K948aDi1V/izX/jps1BWwcWhpn3eLMTpoxKZdvfxsrq2vrGZm2rvr2zu7dvHjQeZJIJTFycsET0QyQJo5y4iipG+qkgKA4Z6YWTm9LvPRIhacLv1TQlfoxGnEYUI6WlwGx43TFteTFS4zDKoyKgp4HZtNv2DNYycSrShArdwPzyhgnOYsIVZkjKgWOnys+RUBQzUtS9TJIU4QkakYGmHMVE+vkse2GdaGVoRYnQjytrpv7eyFEs5TQO9WQZUi56pfifN8hUdOnnlKeZIhzPD0UZs1RilUVYQyoIVmyqCcKC6qwWHiOBsNJ11XUJzuKXl4l71r5qO3fnzc511UYNjuAYWuDABXTgFrrgAoYneIZXeDMK48V4Nz7moytGtXMIf2B8/gD8DZP1 AAAB+nicbVBNS8NAFHzxs9avWI9egkWol5KIoN6KXjxWMLbQhLDZbtqlm03Y3Ygl5K948aDi1V/izX/jps1BWwcWhpn3eLMTpoxKZdvfxsrq2vrGZm2rvr2zu7dvHjQeZJIJTFycsET0QyQJo5y4iipG+qkgKA4Z6YWTm9LvPRIhacLv1TQlfoxGnEYUI6WlwGx43TFteTFS4zDKoyKgp4HZtNv2DNYycSrShArdwPzyhgnOYsIVZkjKgWOnys+RUBQzUtS9TJIU4QkakYGmHMVE+vkse2GdaGVoRYnQjytrpv7eyFEs5TQO9WQZUi56pfifN8hUdOnnlKeZIhzPD0UZs1RilUVYQyoIVmyqCcKC6qwWHiOBsNJ11XUJzuKXl4l71r5qO3fnzc511UYNjuAYWuDABXTgFrrgAoYneIZXeDMK48V4Nz7moytGtXMIf2B8/gD8DZP1 AAAB+nicbVBNS8NAFHzxs9avWI9egkWol5KIoN6KXjxWMLbQhLDZbtqlm03Y3Ygl5K948aDi1V/izX/jps1BWwcWhpn3eLMTpoxKZdvfxsrq2vrGZm2rvr2zu7dvHjQeZJIJTFycsET0QyQJo5y4iipG+qkgKA4Z6YWTm9LvPRIhacLv1TQlfoxGnEYUI6WlwGx43TFteTFS4zDKoyKgp4HZtNv2DNYycSrShArdwPzyhgnOYsIVZkjKgWOnys+RUBQzUtS9TJIU4QkakYGmHMVE+vkse2GdaGVoRYnQjytrpv7eyFEs5TQO9WQZUi56pfifN8hUdOnnlKeZIhzPD0UZs1RilUVYQyoIVmyqCcKC6qwWHiOBsNJ11XUJzuKXl4l71r5qO3fnzc511UYNjuAYWuDABXTgFrrgAoYneIZXeDMK48V4Nz7moytGtXMIf2B8/gD8DZP1 AAAB+nicbVBNS8NAFHzxs9avWI9egkWol5KIoN6KXjxWMLbQhLDZbtqlm03Y3Ygl5K948aDi1V/izX/jps1BWwcWhpn3eLMTpoxKZdvfxsrq2vrGZm2rvr2zu7dvHjQeZJIJTFycsET0QyQJo5y4iipG+qkgKA4Z6YWTm9LvPRIhacLv1TQlfoxGnEYUI6WlwGx43TFteTFS4zDKoyKgp4HZtNv2DNYycSrShArdwPzyhgnOYsIVZkjKgWOnys+RUBQzUtS9TJIU4QkakYGmHMVE+vkse2GdaGVoRYnQjytrpv7eyFEs5TQO9WQZUi56pfifN8hUdOnnlKeZIhzPD0UZs1RilUVYQyoIVmyqCcKC6qwWHiOBsNJ11XUJzuKXl4l71r5qO3fnzc511UYNjuAYWuDABXTgFrrgAoYneIZXeDMK48V4Nz7moytGtXMIf2B8/gD8DZP1 C = 1 N N X i=1 (fi) >(fi) AAACK3icbZDLSsNAFIYnXmu9RV26GSxC3ZREBHVRKHbjqlQwttCkYTKdtEMnF2YmQgl5IDe+iiAurLj1PZy0WdjWHwZ+vnMOc87vxYwKaRhTbW19Y3Nru7RT3t3bPzjUj46fRJRwTCwcsYh3PSQIoyGxJJWMdGNOUOAx0vHGzbzeeSZc0Ch8lJOYOAEahtSnGEmFXL3ZrEPb5winZpa2MlskgZvSupn1W3Z7RKt2gOTI81M/c+lFTvq2jOJF7OoVo2bMBFeNWZgKKNR29Xd7EOEkIKHEDAnRM41YOinikmJGsrKdCBIjPEZD0lM2RAERTjo7NoPnigygH3H1Qgln9O9EigIhJoGnOvMlxXIth//Veon0b5yUhnEiSYjnH/kJgzKCeXJwQDnBkk2UQZhTtSvEI6SikyrfsgrBXD551ViXtdua+XBVadwVaZTAKTgDVWCCa9AA96ANLIDBC3gDn2CqvWof2pf2PW9d04qZE7Ag7ecX5JCoQA== AAACK3icbZDLSsNAFIYnXmu9RV26GSxC3ZREBHVRKHbjqlQwttCkYTKdtEMnF2YmQgl5IDe+iiAurLj1PZy0WdjWHwZ+vnMOc87vxYwKaRhTbW19Y3Nru7RT3t3bPzjUj46fRJRwTCwcsYh3PSQIoyGxJJWMdGNOUOAx0vHGzbzeeSZc0Ch8lJOYOAEahtSnGEmFXL3ZrEPb5winZpa2MlskgZvSupn1W3Z7RKt2gOTI81M/c+lFTvq2jOJF7OoVo2bMBFeNWZgKKNR29Xd7EOEkIKHEDAnRM41YOinikmJGsrKdCBIjPEZD0lM2RAERTjo7NoPnigygH3H1Qgln9O9EigIhJoGnOvMlxXIth//Veon0b5yUhnEiSYjnH/kJgzKCeXJwQDnBkk2UQZhTtSvEI6SikyrfsgrBXD551ViXtdua+XBVadwVaZTAKTgDVWCCa9AA96ANLIDBC3gDn2CqvWof2pf2PW9d04qZE7Ag7ecX5JCoQA== AAACK3icbZDLSsNAFIYnXmu9RV26GSxC3ZREBHVRKHbjqlQwttCkYTKdtEMnF2YmQgl5IDe+iiAurLj1PZy0WdjWHwZ+vnMOc87vxYwKaRhTbW19Y3Nru7RT3t3bPzjUj46fRJRwTCwcsYh3PSQIoyGxJJWMdGNOUOAx0vHGzbzeeSZc0Ch8lJOYOAEahtSnGEmFXL3ZrEPb5winZpa2MlskgZvSupn1W3Z7RKt2gOTI81M/c+lFTvq2jOJF7OoVo2bMBFeNWZgKKNR29Xd7EOEkIKHEDAnRM41YOinikmJGsrKdCBIjPEZD0lM2RAERTjo7NoPnigygH3H1Qgln9O9EigIhJoGnOvMlxXIth//Veon0b5yUhnEiSYjnH/kJgzKCeXJwQDnBkk2UQZhTtSvEI6SikyrfsgrBXD551ViXtdua+XBVadwVaZTAKTgDVWCCa9AA96ANLIDBC3gDn2CqvWof2pf2PW9d04qZE7Ag7ecX5JCoQA== AAACK3icbZDLSsNAFIYnXmu9RV26GSxC3ZREBHVRKHbjqlQwttCkYTKdtEMnF2YmQgl5IDe+iiAurLj1PZy0WdjWHwZ+vnMOc87vxYwKaRhTbW19Y3Nru7RT3t3bPzjUj46fRJRwTCwcsYh3PSQIoyGxJJWMdGNOUOAx0vHGzbzeeSZc0Ch8lJOYOAEahtSnGEmFXL3ZrEPb5winZpa2MlskgZvSupn1W3Z7RKt2gOTI81M/c+lFTvq2jOJF7OoVo2bMBFeNWZgKKNR29Xd7EOEkIKHEDAnRM41YOinikmJGsrKdCBIjPEZD0lM2RAERTjo7NoPnigygH3H1Qgln9O9EigIhJoGnOvMlxXIth//Veon0b5yUhnEiSYjnH/kJgzKCeXJwQDnBkk2UQZhTtSvEI6SikyrfsgrBXD551ViXtdua+XBVadwVaZTAKTgDVWCCa9AA96ANLIDBC3gDn2CqvWof2pf2PW9d04qZE7Ag7ecX5JCoQA== PCA of • Nonlinear lifting & unlifting • Deterministic kernel • Difficulty in multilevel extension

Slide 30

Slide 30 text

APPLICATION-DRIVEN EVIDENCES

Slide 31

Slide 31 text

Problem of U-net Pooling does NOT satisfy the frame condition JC Ye et al, SIAM Journal Imaging Sciences, 2018 Y. Han et al, TMI, 2018. ext > ext = I + > 6= I

Slide 32

Slide 32 text

Improving U-net using Deep Conv Framelets • Dual Frame U-net • Tight Frame U-net JC Ye et al, SIAM Journal Imaging Sciences, 2018 Y. Han and J. C. Ye, TMI, 2018

Slide 33

Slide 33 text

U-Net versus Dual Frame U-Net

Slide 34

Slide 34 text

Tight-Frame U-Net JC Ye et al, SIAM Journal Imaging Sciences, 2018

Slide 35

Slide 35 text

Denoising: U-Net vs. Tight-Frame U-Net

Slide 36

Slide 36 text

Inpainting: U-Net vs. Tight-Frame U-Net

Slide 37

Slide 37 text

Low-Dose CT • To reduce the radiation exposure, sparse-view CT, low-dose CT and interior tomography. Sparse-view CT (Down-sampled View) Low-dose CT (Reduced X-ray dose) Interior Tomography (Truncated FOV)

Slide 38

Slide 38 text

WavResNet for low-dose CT (Kang, Yoo, Y; 2017)

Slide 39

Slide 39 text

Signal Boosting with Multiple Framelet Expansions

Slide 40

Slide 40 text

WavResNet results (Kang et al, TMI, 2018)

Slide 41

Slide 41 text

WavResNet results (Kang et al, TMI, 2018)

Slide 42

Slide 42 text

MBIR Our latest Result C D WavResNet results

Slide 43

Slide 43 text

K-space Deep Learning for Accelerated MRI Han, Y., & Ye, J. C. (2018). k-Space Deep Learning for Accelerated MRI. arXiv preprint arXiv:1805.03779. Conventional Image Domain Learning

Slide 44

Slide 44 text

K-space Deep Learning for Accelerated MRI Deep Neural Network IFT Han, Y., & Ye, J. C. (2018). k-Space Deep Learning for Accelerated MRI. arXiv preprint arXiv:1805.03779. Proposed k-space Deep Learning ALOHA : k-space interpolation à k-space interpolation using deep learning ? Yes

Slide 45

Slide 45 text

ALOHA for Compressed Sensing MRI ALOHA: Annihilating filter-based low-rank Hankel matrix approach • Jin KH et al IEEE TCI, 2016 • Lee et al, MRM, 2015

Slide 46

Slide 46 text

Single coil static MRI

Slide 47

Slide 47 text

Parallel MRI

Slide 48

Slide 48 text

ALOHA CNN

Slide 49

Slide 49 text

k-Space Deep Learning for Accelerated MRI Han et al, arXiv:1805.03779 ~3dB gain

Slide 50

Slide 50 text

Improved Time-Resolved MRA using k-Space Deep Learning Eunju Cha , Eung Yeop Kim and Jong Chul Ye 1 1 2 Dept. of Bio and Brain Engineering, KAIST, Dept. of Radiology, Gachon University Gil Mdeical Center 1 2 Motivation Ø To cover k-space data at different rate Ø Regular sampling pattern following view sharing of several temporal frames • Reconstruction using GRAPPA TWIST Fixed spatial resolution Limited temporal resolution How to reconstruct?

Slide 51

Slide 51 text

Improved Time-Resolved MRA using k-Space Deep Learning Research Goal Ø To improve temporal resolution of TWIST imaging using deep k-space learning Ø To generate multiple reconstruction results with various spatial and temporal resolution using one network VS = 5 VS = 2 CNN

Slide 52

Slide 52 text

k-Space Deep Learning for Parallel MRI Cha et al, arXiv:1806.00806

Slide 53

Slide 53 text

WHAT IF WE DON’T HAVE REFERENCE ?

Slide 54

Slide 54 text

Semi-Supervised Learning for low-dose CT 54 • Multiphase Cardiac CT denoising – Phase 1, 2: low-dose, Phase 3 ~ 10: normal dose – Goal: dynamic changes of heart structure – No reference available Kang et al, arXiv:1806.09748

Slide 55

Slide 55 text

55 • Cardiac CT denoising – Cycle Consistent Adversarial Denoising Network for Multiphase Coronary CT Angiography Semi-supervised Learning using Cyclic-GAN

Slide 56

Slide 56 text

56 Input: phase 1 Denoised output Target: phase 8 Input- output

Slide 57

Slide 57 text

fbp admire recon 139 fbp-target input - admire input - recon AMC002_20180903 FBP(Phase1) FBP(Phase8) RECON ADMIRE Phase1 - ADMIRE Phase1 - RECON

Slide 58

Slide 58 text

• Figures from internet 9 View CT for Baggage Screening

Slide 59

Slide 59 text

9 View CT for Baggage Screening

Slide 60

Slide 60 text

1st view 2nd view 3rd view 4th view 5th view 6th view 7th view 8th view 9th view

Slide 61

Slide 61 text

Semi-Supervised High Resolution View Synthesis Han et al, arXiv preprint arXiv:1712.10248, (2017). CT meeting 2018

Slide 62

Slide 62 text

Semi-Supervised High Resolution View Synthesis 128 256 64 128 6 4 256 256 512 512 512 1024 512 1024 512 256 512 256128 • Key idea • Training with measured views • Inference with non-measured views

Slide 63

Slide 63 text

FBP

Slide 64

Slide 64 text

TV

Slide 65

Slide 65 text

Ours

Slide 66

Slide 66 text

Summary • Deep learning for inverse problems • Significant performance gain • Has becomes mainstream topics • Deep convolutional framelets: • A new mathematical tool for understanding deep neural network for inverse problems • Biomedical image reconstruction • Key application for machine learning • Semi-supervised learning • New opportunities

Slide 67

Slide 67 text

math Muchas gracias !