Slide 1

Slide 1 text

Separation of bounded arithmetic using a consistency statement SLACS 2019, Kyoto University Yoriyuki Yamagata AIST, Japan Sep. 9, 2019

Slide 2

Slide 2 text

This presentation about ... A possible proof strategy of Separation of Buss’s S1 2 and S2, S1 2 S2 (?) As a corollary, P = NP (?!) I do not believe it at all, but it may contain interesting techniques or conjectures Draft: https://www.dropbox.com/s/g22x84rfdqmyx82/

Slide 3

Slide 3 text

Draft and slides location Figure: Draft location Figure: Slides location

Slide 4

Slide 4 text

Definition of Buss’s Si 2 [Buss, 1986] Si 2 is formulated by PIND for Σb i -formula plus axioms Ax. 1 Ax is finite, 2 all formulas in Ax are true in the standard interpretation, 3 all formulas in Ax is quantifier free, 4 Ax implies all BASICe axioms in [Buss and Ignjatovi´ c, 1995] 5 Ax implies formulas corresponding P = NP in [Takeuti, 1996] if P = NP. S2 := i=1,2,... Si 2

Slide 5

Slide 5 text

Definition of Cook’s PV [Cook, 1975] 1 Defining axioms for polynomial-time functions 2 Identity axioms 3 Substitution axiom 4 Induction axiom Consistency of (1) and (2) inside S1 2 is proven in [Beckmann, 2002] Consistency of (1) - (3) inside S2 2 is proven in [Yamagata, 2018] Definition PV− is a system obtained from PV by dropping induction axiom PV− 1 = PV− + first order logic PV− 1 (D) is the restriction of PV− 1 in which the number of quantifiers and equations is bounded by D.

Slide 6

Slide 6 text

Proof strategies 1 Define PV− q (D), an extension of PV− with finite number D of Henkin-like quantifiers 2 Prove consistency of PV− q (D) in S2 3 Embed PV− 1 (D) to PV− q (D) in S2 4 Prove embedded PV− 1 (D) + Ax is consistent in S2 5 Prove consistency of PV− 1 (D) + Ax is not provable in S1 2 5. is modification of [Buss and Ignjatovi´ c, 1995] Our tasks are 1-4

Slide 7

Slide 7 text

Dependency matrix Definition A dependency matrix Q is a sequence of 1 x(x1, . . . , xn) 2 {x}(x1, . . . , xn) in which all x are different (but x1, . . . , xn may have overlap) x(x1, . . . , xn) is a existential quantification which depends on x1, . . . , xn {x}(x1, . . . , xn) is a universal quantification which depends on x1, . . . , xn A dependency matrix is almost like a Henkin quantifier [Krynicki and Mostowski, 1995], but the order has meaning (to construct a semantics)

Slide 8

Slide 8 text

Language and proofs of PV− q (D) Definition Language of S2 plus Boolean variables and terms Additional functions bit(x, y): |y|-th bit of x p is the if-then-else function p(⊥, x, y) = x and p( , x, y) = y Boolean functions !, &, ||, →, ↔ A formula of PV− q is a form Q =⇒ φ where Q is a dependency matrix and φ is an equation Definition PV− q (D)-proofs are tree of PV− q (D)-formulas built by the following axioms and rules

Slide 9

Slide 9 text

Axioms All defining axioms for polynomial-time functions plus bit(ε, xW) = ⊥ bit(0xW, ε) = ⊥ bit(1xW, ε) = bit(bx, b y) = bit(x, y) p(⊥, x, y) = x p( , x, y) = y Finite many axioms of Boolean algebra t(x1, . . . , xn) = u(x1, . . . , xn)

Slide 10

Slide 10 text

Inference: quantifier reordering Q1, x(x), y([x, ]y), Q2 =⇒ φ Q1, y([x, ]y), x(x), Q2 =⇒ φ Q1, {x}(x), {y}([x, ]y), Q2 =⇒ φ Q1, {y}([x, ]y), {x}(x), Q2 =⇒ φ Q1, x(x), {y}(y), Q2 =⇒ φ Q1, {y}(y), x(x), Q2 =⇒ φ Q1, {x}(x), y(y), Q2 =⇒ φ Q1, y(y), {x}(x), Q2 =⇒ φ where y ∈ {x} and x ∈ {y} and [. . .] means it is optional

Slide 11

Slide 11 text

Inference: removing unused quantification Q1, x(y), Q2 =⇒ φ Q1, Q2 =⇒ φ Q1, {x}(y), Q2 =⇒ φ Q1, Q2 =⇒ φ if x is not a free variable in Q2 =⇒ φ

Slide 12

Slide 12 text

Inference: introduction and elimination of quantifiers Q =⇒ φ(y) {y}(y), Q =⇒ φ(y) Q =⇒ φ(t) Q, x(FV(t)) =⇒ φ(x) if y is not a bound variable of Q and y is a free variables of Q =⇒ φ(y) Q1, {x}(x) =⇒ φ(x) Q1 =⇒ φ(t) if FV(t) ⊆ {x}

Slide 13

Slide 13 text

Inference: axioms and equality rules Q1 =⇒ φ for axiom φ Q1 =⇒ u = t Q1 =⇒ t = u Q1 =⇒ t = u Q2 =⇒ u = r Q1, Q2 =⇒ t = r u if Q1, Q2 is a well-formed dependency matrix

Slide 14

Slide 14 text

Inference: compatibility of equality and p-rule Q1 =⇒ t1 = u1 · · · Qn =⇒ tn = un Q1, . . . , Qn =⇒ f (t1, . . . , tn) = f (u1, . . . , un) Q1 =⇒ t1 = u1 Q2 =⇒ t2 = u2 Q1, Q2 =⇒ p(b, t1, t2) = p(b, u1, u2)

Slide 15

Slide 15 text

A computation: idea A PV− q -proof of . . . . Q =⇒ t = u is interpreted as a constraction of a “computation” of ξ(u) from a “computation” of ξ(t) and reverse direction, where quantifiers Q is interpreted by substitutions ξ

Slide 16

Slide 16 text

A computation: problem I Problem I The size of a computation can be exponential, e.g. 2#2#2# · · · #2 Therefore, the proof cannot construct a computation of the lefthand from the righthand proj1 2 (0, 2#2#2# · · · #2) = 0 Solution Introduce unknown value ∗

Slide 17

Slide 17 text

A computation: problem II Problem What is the value of bit(∗, ∗)? We want to interpret the value of a Boolean term as a real Boolean, not, for example, a three-valued logic, so that we can prove that ⊥ = is never derived Solution We choose the value of bit(∗, ∗) randomly, yet consistently across the same computation. For this purpose, we incorporate the evaluation of bit(∗, ∗) into an evaluation environment ρ

Slide 18

Slide 18 text

Approximate value: g-numerals Definition ([Beckmann, 2002, Yamagata, 2018]) g-numerals v ∈ W := ε | ∗ | 0v | 1v Approximate relation is defined as: ε ε, v ∗, v w =⇒ bv bw for b = 0, 1, If v w then w is often written as v∗. G-numerals and Boolean values are called g-values

Slide 19

Slide 19 text

A environment and computation statement Definition An environment ρ of t is a map uW → v ∈ W uB → b ∈ B = {⊥, } for subformulas of t t ∈ dom(ρ) ⇐⇒ ρ(t) is defined. Definition A computational statement is a form t, ρ ↓ v where t is a term, ρ is an environment and v is a g-value.

Slide 20

Slide 20 text

Computation rules I Computations are DAGs built by the following rules: tW, ρ ↓ ∗ ∗ x, ρ ↓ v∗ Env where v = ρ(x) v, ρ ↓ v∗ v where v is a numeral t, ρ ↓ v bt, ρ+ ↓ bv∗ b where b is either 0 or 1 and t is not a numeral.

Slide 21

Slide 21 text

Computation rules II ( ti , ρ ↓ vi )i=1,...,m εm(t1, . . . , tm), ρ+ ↓ ε εm ( tj , ρ ↓ vj )j=1,...,m proji m (t1, . . . , tm), ρ+ ↓ v∗ i proji m t, ρ ↓ ⊥ u1, ρ ↓ v1 u2, ρ ↓ v2 p(⊥, u1, u2), ρ+ ↓ v∗ 1 p t, ρ ↓ u1, ρ ↓ v1 u2, ρ ↓ v2 p( , u1, u2), ρ+ ↓ v∗ 2 p

Slide 22

Slide 22 text

Computation rules III t, ρ ↓ v u, ρ ↓ w bit(t, u), ρ ↓ b bit where b is determined by bit(ε, w) = ⊥ if w = ∗ bit(bv, ε) = b bit(bv, b w) = bit(v, w). If bit(v, w) function is undefined, we often write bit(v, w) = ∗. If bit(v, w) = ∗, we put b = ρ(bit(t, u)).

Slide 23

Slide 23 text

Computation rules IV For Boolean connectives t, ρ ↓ b !t, ρ ↓ !b ! t1, ρ ↓ b1 t2, ρ ↓ b2 t1&t2, ρ ↓ b1&b2 & ⊥, ρ ↓ ⊥ ⊥ , ρ ↓ If f is defined by composition, we have the following rule. g(y, ξ ↓ z h1(x), ν ↓ w1 · · · hm(x), ν ↓ wm ( ti , ρ ↓ vi )i=1,...,n f (t1, . . . , tn), ρ+ ↓ z∗ where y = y1, . . . , ym, x = x1, . . . , xn, ν(xi ) = vi , i = 1, . . . , n and ξ(yj ) = wj , j = 1, . . . , m.

Slide 24

Slide 24 text

Computation rules V If f is defined by recursion, we have the following rules. gε(x1, . . . , xn), ξ ↓ z t, ρ ↓ ε ( ti , ρ ↓ vi )i=1,...,n f (t, t1, . . . , tn), ρ+ ↓ z∗ rec-ε where ξ(xi ) = vi for i = 1, . . . , n. gb(x0, y, x), ξ ↓ z t, ρ ↓ bv0 f (x0, x), ν ↓ w ( tj , ρ ↓ vj )j=1,...,n f (t, t1, . . . , tn), ρ+ ↓ z∗ where b = 0, 1 and x = x1, . . . , xn. The environment ν is defined by ν(xj ) = vj for j = 1, . . . , n and ν(x0) = v0 while ξ is defined by ξ(xj ) = vj , ξ(x0) = v0, ξ(y) = w.

Slide 25

Slide 25 text

Complexity of computations Definition For a computation σ, C(σ) is the minimum value which satisfies nodes(σ) ≤ C(σ) size(t) ≤ C(σ) if t, ρ ↓ v ∈ σ nodes(v) ≤ C(σ) if t, ρ ↓ v ∈ σ

Slide 26

Slide 26 text

Basic properties - computation of successors Lemma (S1 2 ) If ε, ρ ↓ v is contained in a computation σ, then either v ≡ ε or v ≡ ∗. If bt, ρ ↓ v where t is not a numeral, is contained in σ, then either v ≡ bv0 for some g-value v0 or v ≡ ∗. If v ≡ bv0, then σ contains t, ρ∗ ↓ v0 and v0 v0. Proof. Induction on σ

Slide 27

Slide 27 text

Basic properties - computation of numerals Lemma (S1 2 ) If v, ρ ↓ w, in which v are a numeral, is contained in a computation σ, then v w. Proof. Only rules which can derive v, ρ ↓ w are ∗ and v-rules.

Slide 28

Slide 28 text

Maximal environment Definition (maximal environment) For an environment ρ and a term of type W, we define V (t, ρ) = {v | σ t, ρ ↓ v, C(σ) ≤ nodes(t) · U} vals(t, ρ) = {v ∈ V (t, ρ) | v ∈ V (t, ρ), v v =⇒ v = v} ρ is maximal if ρ(t) ∈ vals(t, ξ) and ρ(bit(a, b)) = bit(ρ(a), ρ(b)) if bit(ρ(a), ρ(b)) = ∗. Env(ρ, t, U) ⇐⇒ ρ is a maximal environment . Env(ρ, t, U) is a bounded formula.

Slide 29

Slide 29 text

Substitution into ρ Lemma Let ρ be a maximal environment. Then, there is a maximal environment ρ such that ρ (x) = ρ(u) ρ(t(u)) ρ (t(x))

Slide 30

Slide 30 text

Basic properties - compatibility lemma Definition is defined as v w ⇐⇒ either v w or w v ρ1 ρ2 ⇐⇒ ρ1(t) ρ2(t) for any t ∈ dom(ρ1) ∩ dom(ρ2) For Boolean b1, b2, define b1 b2 ⇐⇒ b1 = b2 Lemma (S2: Compatibility lemma) Let ρ1 and ρ2 be maximal environments which satisfy ρ1 ρ2, t be the term. If both of t, ρ1 ↓ v and t, ρ2 ↓ w are contained in computations σ and τ respectively, then v w.

Slide 31

Slide 31 text

Most accurate evaluation in σ Definition Compatibility lemma allows extracting the most “accurate” value v(t, ρ, σ) of t evaluated in a maximal environment ρ from a computation

Slide 32

Slide 32 text

Basic properties - substitution lemma I Lemma (S2, Substitution Lemma I) Let ρ, ρ be maximal environments ρ is an extension of ρ ρ (xi ) = wi ρ (bit(r(x), s(x))) = ρ(bit(r(u), s(u))) σ t1(u1, . . . , un), ρ ↓ v1, . . . , tm(u1, . . . , un), ρ ↓ vm. =⇒ ∃τ t1(x), ρ ↓ v1, . . . , tm(x), ρ ↓ vm. s.t. C(τ) ∈ C(σ) + m j=1 size(tj (ε, . . . , ε))

Slide 33

Slide 33 text

Basic properties - substitution lemma II Lemma (S2, Substitution Lemma II) Let ρ, ρ be maximal environments s.t. ρ is an extension of ρ ρ (xi ) = wi ρ (bit(r(x), s(x))) = ρ(bit(r(u), s(u))) σ t1(x1, . . . , xn), ρ ↓ v1, . . . , tm(x1, . . . , xn), ρ ↓ vm =⇒ ∃τ t1(u1, . . . , un), ρ ↓ v1, . . . , tm(u1, . . . , un), ρ ↓ vm s.t. C(τ) ≤ max(C(σ) + m j=1 size(tj (ε, . . . , ε)), M(τ)).

Slide 34

Slide 34 text

Basic properties - defining and Boolean axioms Lemma t = u : substitution instance of an axiom σ t, ρ ↓ v, α =⇒ ∃τ u, ρ ↓ v, α s.t. C(τ) ≤ C(σ) + size(t = u)

Slide 35

Slide 35 text

Consistency proof - preliminaries Definition [q1/x1] · · · [qd /xd ], d ≤ D is called substitution sequence if x1, . . . , xd are all different dom(ξ) = {x1, . . . , xd } ξ(t) ≡ t[qd /xd ] · · · [q1/x1] B(ξ) = max{size(ξ(xi )) | i = 1, . . . , d} ξ : η is the concatenation of ξ and η Env(ρ, t, U): ρ is a maximal environment or t. U is the same U in the definittion of maximal environments.

Slide 36

Slide 36 text

Consistency proof - Sat relation for equality Definition U, B be integers such that U ≥ 2B ρ a maximal environment α judgements ξ be a substitution sequence such that B(ξ) ≤ (U − B)d Sat(U, B, ξ, ρ, α, t = u) ⇐⇒ ∀σ ξ(t), ρ ↓ v, α s.t. C(σ) ≤ (U − B)D+2, ∃τ ξ(u), ρ ↓ v, α s.t. C(τ) ≤ C(σ) + BD+2 and the ymmetric clause

Slide 37

Slide 37 text

Consistency proof - Sat relation for quantifiers Definition For universal, Sat(U, B, ξ, ρ, α, {x}(z1, . . . , zm), Γ =⇒ φ) ⇐⇒ ∀q, B([q/x] : ξ) ≤ (U − B)d , s.t. FV(q) ⊆ {z1, . . . , zm}, Sat(U, B, [q/x] : ξ, ρ, α, Γ =⇒ φ) For existential, Sat(U, B, ξ, ρ, α, x(z1, . . . , zm), Γ =⇒ φ) ⇐⇒ B ≤ ∀B ≤ U/2, ∃q, B([q/x] : ξ) ≤ (U − B )d s.t. FV(q) ⊆ {z1, . . . , zm}, Sat(U, B , [q/x] : ξ, ρ, α, Γ =⇒ φ)

Slide 38

Slide 38 text

Consistency proof - properties of Sat Lemma (S2, monotonicity) If B1 ≤ B2, Sat(U, B1, ξ, ρ, α, S) =⇒ Sat(U, B2, ξ, ρ, α, S) Lemma (S2, substitution for Sat) Let p be a term such that ξ(q) = q. ∀ρ, Env(ρ, UD+2) → Sat(U, B, ξ, ρ, α, t(x) = u(x)) =⇒ ∀ρ, Env(ρ, UD+2) → Sat(U, B + size(t(ε) = u(ε)), ξ, ρ, α, t(q) = u(q))

Slide 39

Slide 39 text

Consistency proof - soundness theorem Theorem (S2, soundness) a proof χ of PV− q (D) of S ≡ Q =⇒ φ an integer U s.t. U ≥ 2size(χ) a substitution sequence η ≡ [q1/x1] · · · [qd /xd ] s.t. B(η) ≤ (U − size(χ))d a sequence of statements α s.t. M(α) ≤ (U − size(χ))D+2 where M(α) is the maximum size of terms appearing in α. Then, Sat(U, size(χ), η, ρ, α, S) holds.

Slide 40

Slide 40 text

Proof of soundness theorem - transitivity rule Q1 =⇒ t = u Q2 =⇒ u = r Q1, Q2 =⇒ t = r u Env(ρ, UD+2) =⇒ Sat(U, size(χ1), η1, ρ, α, t = u) (IH), Env(ρ, UD+2) =⇒ Sat(U, size(χ2), η2, ρ, α, u = s) (IH). By substitution lemma for Sat, Env(ρ, UD+2) =⇒ Sat(U, size(χ1) + size(η2(t)), η1, ρ, α, η2(t) = η2(u))), Env(ρ, UD+2) =⇒ Sat(U, size(χ2) + size(η1(u)), η2, ρ, α, η1(u) = η1(s))). Because η1 : η2 = η2 : η1, 1 Sat(U, size(χ1) + size(η2(t)), η1 : η2, ρ, α, t = u)) 2 Sat(U, size(χ2) + size(η1(u)), η1 : η2, ρ, α, u = s)) Combining 1 and 2, Sat(U, size(χ), η1 : η2, ρ, α, t = s))

Slide 41

Slide 41 text

Proof of soundness theorem - universal quantification Q =⇒ t(x) = u(x) {x}(x), Q =⇒ t(x) = u(x) For q, B([q/x] : ξ) ≤ (U − size(χ))d+1 s.t. FV(q) ⊆ {x}. By induction hypothesis, ∀ρ, Env(UD+2, ρ) → Sat(U, B, ξ, ρ, α, t(x) = u(x)) By substitution Sat(U, size(χ1) + size(t(ε) = u(ε)), ξ, ρ, α, t(q) = u(q)) Therefore, Sat(U, size(χ), [q/x] : ξ, ρ, α, t(x) = u(x))

Slide 42

Slide 42 text

PV1 - axioms A PV1-proof is a tree of sequents built by following axioms and rules. The subsystem PV1(D) is a system in which for all sequents Γ =⇒ ∆, the number of quantifiers plus the number of equations is bounded by D. t = u =⇒ t = u =⇒ t = t t = u =⇒ u = t t = u, u = s =⇒ t = s t1 = u1, . . . , tm = um =⇒ f (t1, . . . , tm) = f (u1, . . . , um) if f (x1, . . . , xm) = t is a defining axiom, =⇒ f (u1, . . . , um) = t(u1, . . . , um)

Slide 43

Slide 43 text

PV1 - structural and propositional rules Γ =⇒ ∆ φ, Γ =⇒ ∆ Γ =⇒ ∆ Γ =⇒ ∆, φ φ, φ, Γ =⇒ ∆ φ, Γ =⇒ ∆ Γ =⇒ ∆, φ, φ Γ =⇒ ∆, φ φi , Γ =⇒ ∆ φ1 ∧ φ2, Γ =⇒ ∆ (i = 1, 2) Γ =⇒ ∆, φ1 Σ =⇒ Π, φ2 Γ, Σ =⇒ ∆, Π, φ1 ∧ φ2 Γ =⇒ ∆, φ ¬φ, Γ =⇒ ∆ φ, Γ =⇒ ∆ Γ =⇒ ∆, ¬φ

Slide 44

Slide 44 text

PV1 - predicate and cut rules φ(t), Γ =⇒ ∆ ∀x.φ(x), Γ =⇒ ∆ Γ =⇒ ∆, φ(x) Γ =⇒ ∆, ∀x.φ(x) if x ∈ FV(Γ, ∆) φ(x), Γ =⇒ ∆ ∃x.φ(x), Γ =⇒ ∆ if x ∈ FV(Γ, ∆) Γ =⇒ ∆, φ(t) Γ =⇒ ∆, ∃x.φ(x) Γ =⇒ ∆, φ φ, Σ =⇒ Π Γ, Σ =⇒ ∆, Π

Slide 45

Slide 45 text

Embedding of PV− 1 (D) into PV− q (D) Definition Let φ1 ≡ Q1 =⇒ t1 = and φ2 ≡ Q2 =⇒ t2 = . Define φ⊥ ≡ Q⊥ =⇒ !t = ⊥ φ1 ∧ φ2 ≡ Q1, Q2 =⇒ t1&t2 = [⊥]q ≡ ⊥ = [t = u]q ≡ {i}(FV(t), FV(u)) =⇒ bit(t, i) ↔ bit(u, i) = [¬φ]q ≡ [φ]⊥ q [φ1 ∧ φ2]q ≡ [φ1]q ∧ [φ2]q [∀x.φ]q ≡ {x}(FV(φ)), [φ]q [∃x.φ]q ≡ x(FV(φ)), [φ]q.

Slide 46

Slide 46 text

Soundness of embedding of PV− 1 (D) into PV− q (D) Theorem (S2, Soundness of embedding) PV− 1 (D) φ1, . . . , φn =⇒ ψ1, . . . , ψm implies PV− q (D) [¬φ1 ∨ · · · ∨ ¬φn ∨ ψ1 ∨ · · · ∨ ψm]q

Slide 47

Slide 47 text

Soundness proof of embedding - contraction We need to prove [ψ ∨ φ]q from [ψ ∨ φ ∨ φ]q. Let [ψ]q ≡ Q1 =⇒ t = [φ]q ≡ Q2 =⇒ u = Q1, Q2, Q2 =⇒ t||u||u = Assume Q2 ≡ Q3, y(x). Q1, Q3, y(x), Q3 , y (x ) =⇒ t||u||u = . Let q(z) = p(z, y, y ). Q1, Q3, y(x), Q3 , y (x ) =⇒ t||u[q(u)/y] = Q1, Q3, Q3 , y(x), y (x ), z(x, y, y ) =⇒ t||u(z) = Q1, Q3, Q3 , z(x, x ), y(x), y (x) =⇒ t||u(z) = Q1, Q3, Q3 , z(x, x ) =⇒ t||u(z) = For the case Q2 ≡ Q3, {z}(x), the proof is easy.

Slide 48

Slide 48 text

Consistency of PV− 1 (D) + Ax : I Theorem (S2) Let A1 be the universal closure of conjunction of Ax. If A1 can be written in the language of PV− 1 (D), S2 proves the consistency of PV− 1 (D) + A1. To prove the theorem, we use the following lemma. Lemma (S1 2 , Sound evaluation) Let t(x1, . . . , xn) be a term of type and ρ be an exact maximal environment. Assume that t(ρ(x1), . . . , ρ(xn)) = d in the standard interpretation. Then, there is a computation σ such that σ t, ρ ↓ d and nodes(σ) ≤ Pt(B(ρ)) for a polynomial Pt. Let P be a polynomial such that P(|n1| + · · · + |nm|) ≥ |t(n1, . . . , nm)| for any term t which appears in Ax.

Slide 49

Slide 49 text

Proof of consistency of PV− 1 (D) + Ax : II Argue inside S2. A1 is embedded into PV− q (D) as tA1 = . If PV− 1 (D) + Ax is inconsistent, we have PV− q (D) i1, . . . , im =⇒ tA1 (i1, . . . , im) = ⊥ Let U as UD ≥ P(size(π)D+2). Soundness of PV− q (D) and by definition of Sat, Sat(U, size(π), ρ, tA1 (u1, . . . , um) = ⊥) for any maximal environment ρ. Because ⊥ has the obvious computation, there is a computation σ of tA1 (u1, . . . , um), ρ ↓ ⊥.

Slide 50

Slide 50 text

Proof of consistency of PV− 1 (D) + Ax : III Claim (Construction of ρe and ρ) Assume that u1, u2, . . . , um are ordered by increasing order of their sizes. Then, there are maximal environments ρ and ρe such that ρe is an exact maximal environment for x1, . . . , xm. ρe(t(x1, . . . , xm)) ρ(t(u1, . . . , um)) for any subterm t of tA1 Proof. By induction on t and sound evaluation lemma.

Slide 51

Slide 51 text

Proof of consistency of PV− 1 (D) + Ax : IV Proof of the theorem. There is a computation σ of tA1 (u1, . . . , um), ρ ↓ ⊥. ρe(tA1 (x1, . . . , xm) ρ(tA1 (u1, . . . , um)) = ⊥ Because A1 is true, there is a computation τ of tA1 (x1, . . . , xm), ρe ↓ . Therefore, ρe , ⊥. Contradiction.

Slide 52

Slide 52 text

Beckmann, A. (2002). Proving consistency of equational theories in bounded arithmetic. Journal of Symbolic Logic, 67(1):279–296. Buss, S. R. (1986). Bounded arithmetic. Bibliopolis. Buss, S. R. and Ignjatovi´ c, A. (1995). Unprovability of consistency statements in fragments of bounded arithmetic. Annals of pure and applied Logic, 74:221–244. Cook, S. A. (1975). Feasibly constructive proofs and the propositional calculus (preliminary version).

Slide 53

Slide 53 text

In Proceedings of seventh annual ACM symposium on Theory of computing, pages 83–97. ACM. Krynicki, M. and Mostowski, M. (1995). Henkin quantifiers. In Quantifiers: logics, models and computation, pages 193–262. Springer. Takeuti, G. (1996). Incompleteness theorems and Si 2 versus Si+1 2 . In Logic Colloquium ’96: Proceedings of the Colloquium held in San Sebasti´ an, Spain, July 9-15, 1996, volume 12 of Lecture notes in logic, pages 247–261. Yamagata, Y. (2018). Consistency proof of a fragment of pv with substitution in bounded arithmetic. The Journal of Symbolic Logic, 83(3):1063–1090.