Slide 40
Slide 40 text
Proof of soundness theorem - transitivity rule
Q1 =⇒ t = u Q2 =⇒ u = r
Q1, Q2 =⇒ t = r
u
Env(ρ, UD+2) =⇒ Sat(U, size(χ1), η1, ρ, α, t = u) (IH),
Env(ρ, UD+2) =⇒ Sat(U, size(χ2), η2, ρ, α, u = s) (IH).
By substitution lemma for Sat,
Env(ρ, UD+2) =⇒
Sat(U, size(χ1) + size(η2(t)), η1, ρ, α, η2(t) = η2(u))),
Env(ρ, UD+2) =⇒
Sat(U, size(χ2) + size(η1(u)), η2, ρ, α, η1(u) = η1(s))).
Because η1 : η2 = η2 : η1,
1 Sat(U, size(χ1) + size(η2(t)), η1 : η2, ρ, α, t = u))
2 Sat(U, size(χ2) + size(η1(u)), η1 : η2, ρ, α, u = s))
Combining 1 and 2, Sat(U, size(χ), η1 : η2, ρ, α, t = s))