Slide 1

Slide 1 text

11 Guiding Principles for Interactive Graphics Based on LIBD Data Science Projects Leonardo Collado-Torres @fellgernon https://speakerdeck.com/lcolladotor

Slide 2

Slide 2 text

CHALLENGES 2 Before you jump in the world of interactive graphics

Slide 3

Slide 3 text

CHALLENGES 3 Before you jump in the world of interactive graphics make sure that you are aware of some of the drawbacks

Slide 4

Slide 4 text

eQTL browser 4 http://www.nature.com/nbt/journal/v35/n4/full/nbt.3838.html

Slide 5

Slide 5 text

CHALLENGES 5 D3: new language, new tools http://nvd3.org//examples/lineWithFocus.html https://github.com/ramnathv/rCharts

Slide 6

Slide 6 text

CHALLENGES 6 https://github.com/nachocab/clickme https://github.com/lcolladotor/ballgownR-devel Interpretability

Slide 7

Slide 7 text

CHALLENGES 7 Data resolution https://github.com/nachocab/clickme https://github.com/lcolladotor/ballgownR-devel

Slide 8

Slide 8 text

CHALLENGES 8

Slide 9

Slide 9 text

CHALLENGES 9 Dependencies https://github.com/nachocab/clickme https://github.com/lcolladotor/ballgownR-devel

Slide 10

Slide 10 text

CHALLENGES 10 rMaps case https://github.com/ramnathv/rMaps

Slide 11

Slide 11 text

CHALLENGES 11 Nowadays: no map! https://github.com/ramnathv/rMaps http://lcolladotor.github.io/

Slide 12

Slide 12 text

CHALLENGES 12 External dependencies Now missing: https://dl.dropboxusercontent.com/u/10794332/mx_states.json https://github.com/ramnathv/rMaps http://lcolladotor.github.io/

Slide 13

Slide 13 text

CHALLENGES 13 Quick summary • Interpretability • Data resolution: loading and sharing • Dependencies for deploying • External dependencies: less control

Slide 14

Slide 14 text

29 eQTL browser Scenario I: for publication • Bill Ulrich 14

Slide 15

Slide 15 text

eQTL browser 15 http://www.nature.com/nbt/journal/v35/n4/full/nbt.3838.html

Slide 16

Slide 16 text

eQTL browser Thousands of eQTLs 16 http://www.biorxiv.org/content/early/2017/04/05/124321

Slide 17

Slide 17 text

eQTL browser Search for a gene 17 http://eqtl.brainseq.org/

Slide 18

Slide 18 text

eQTL browser Choose an eQTL to explore 18 http://eqtl.brainseq.org/

Slide 19

Slide 19 text

eQTL browser View the data 19 http://eqtl.brainseq.org/

Slide 20

Slide 20 text

eQTL browser View all the data + mouse-over display 20 http://eqtl.brainseq.org/

Slide 21

Slide 21 text

eQTL browser Collection of data 21 http://eqtl.brainseq.org/

Slide 22

Slide 22 text

eQTL browser Link to major community tools 22 http://eqtl.brainseq.org/

Slide 23

Slide 23 text

eQTL browser Customized view with LIBD’s data 23 http://eqtl.brainseq.org/

Slide 24

Slide 24 text

eQTL browser Scenario 1 summary 24 http://eqtl.brainseq.org/ • Re-use established tools as much as possible • Keep the information users will look at • Simple graphics • Speed is important • While developing: keep in mind users will want changes

Slide 25

Slide 25 text

Scenario II: for common use 25 • Stephen Semick shinycsv

Slide 26

Slide 26 text

Lots of tabular data: how can we make it easy to explore? 26 shinycsv

Slide 27

Slide 27 text

Excel’s recommended charts 27 shinycsv

Slide 28

Slide 28 text

Our solution: shinycsv 28 shinycsv https://jhubiostatistics.shinyapps.io/shinycsv/

Slide 29

Slide 29 text

Simple summary statistics 29 shinycsv https://jhubiostatistics.shinyapps.io/shinycsv/

Slide 30

Slide 30 text

Subset, search, re-order 30 shinycsv https://jhubiostatistics.shinyapps.io/shinycsv/

Slide 31

Slide 31 text

Check new summary statistics after sub setting 31 shinycsv https://jhubiostatistics.shinyapps.io/shinycsv/

Slide 32

Slide 32 text

Visualize a variable: just select it 32 shinycsv https://jhubiostatistics.shinyapps.io/shinycsv/

Slide 33

Slide 33 text

Includes summary statistics 33 shinycsv https://jhubiostatistics.shinyapps.io/shinycsv/

Slide 34

Slide 34 text

Plot changes by variable type 34 shinycsv https://jhubiostatistics.shinyapps.io/shinycsv/

Slide 35

Slide 35 text

Plot two variables and change colors 35 shinycsv https://jhubiostatistics.shinyapps.io/shinycsv/

Slide 36

Slide 36 text

Upload your data: handles different formats 36 shinycsv https://jhubiostatistics.shinyapps.io/shinycsv/ Download data if you edited it

Slide 37

Slide 37 text

Reproduce and learn from shinycsv 37 shinycsv https://jhubiostatistics.shinyapps.io/shinycsv/

Slide 38

Slide 38 text

Our solution: shinycsv 38 shinycsv https://jhubiostatistics.shinyapps.io/shinycsv-showcase/

Slide 39

Slide 39 text

Using shinycsv non-interactively 39 shinycsv https://jhubiostatistics.shinyapps.io/shinycsv/ Create PDFs with many plots, then explore manually

Slide 40

Slide 40 text

Scenario II summary 40 shinycsv http://lcolladotor.github.io/2017/01/20/Easily-explore-a-table-with-shinycsv • Re-use established tools as much as possible • Simple graphics: can be made prettier later • Minimize user options: try to make best guess • Might lead to unexpected use cases

Slide 41

Slide 41 text

Collaborators 41 Hopkins Jeff Leek Shannon Ellis Ben Langmead Chris Wilks Kai Kammers Kasper Hansen Margaret Taub OHSU Abhinav Nellore LIBD Andrew Jaffe Emily Burke Stephen Semick Carrie Wright Amanda Price Nina Rajpurohit Bill Ulrich

Slide 42

Slide 42 text

11 Guiding Principles for Interactive Graphics Based on LIBD Data Science Projects Leonardo Collado-Torres @fellgernon https://speakerdeck.com/lcolladotor