Slide 1

Slide 1 text

©2021 Wantedly, Inc. ձࣾ๚໰ΞϓϦʮWantedly Visitʯͷ σʔλͰݟΔ૬ޓਪનγεςϜ [F21-5] DEIM2021 [F21]৘ใݕࡧɾ৘ใਪનᶆ ʲٕज़ใࠂʳ 2.March.2021 - দଜ༏໵ʢ΢ΥϯςουϦʔגࣜձࣾʣ @yu-ya4

Slide 2

Slide 2 text

©2021 Wantedly, Inc. 1. ͸͡Ίʹ • ࣗݾ঺հɺձࣾͱϓϩμΫτͷ঺հ • ϓϩμΫτʹ͓͚ΔσʔλαΠΤϯεͷऔΓ૊Έࣄྫ • ΞΧσϛΞʹ͓͚Δ׆ಈ 2. ૬ޓਪનγεςϜͱ͸ • ૬ޓਪનγεςϜͷ֓ཁɾಛ௃ • طଘख๏ͷ঺հ 3. ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ • Wantedly Visit ͷσʔλʹରͯ͠طଘख๏Λద༻࣮ͨ͠ݧɾߟ࡯ • ࣮ݧ݁ՌΛड͚ͨվྑख๏ͷఏҊɾ࣮ݧɾߟ࡯ ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ

Slide 3

Slide 3 text

©2021 Wantedly, Inc. 1. ͸͡Ίʹ • ࣗݾ঺հɺձࣾͱϓϩμΫτͷ঺հ • ϓϩμΫτʹ͓͚ΔσʔλαΠΤϯεͷऔΓ૊Έࣄྫ • ΞΧσϛΞʹ͓͚Δ׆ಈ 2. ૬ޓਪનγεςϜͱ͸ • ૬ޓਪનγεςϜͷ֓ཁɾಛ௃ • طଘख๏ͷ঺հ 3. ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ • Wantedly Visit ͷσʔλʹରͯ͠طଘख๏Λద༻࣮ͨ͠ݧɾߟ࡯ • ࣮ݧ݁ՌΛड͚ͨվྑख๏ͷఏҊɾ࣮ݧɾߟ࡯ ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ

Slide 4

Slide 4 text

©2021 Wantedly, Inc. ✓ দଜ ༏໵ʢYuya Matsumuraʣ ✓ 2018೥3݄ ژ౎େֶେֶӃ৘ใֶݚڀՊ म࢜՝ఔमྃ ✓ ΢ΥϯςουϦʔגࣜձࣾ Recommendation νʔϜϦʔυ ✓ σʔλαΠΤϯεɺϓϩμΫτϚωδϝϯτ ✓ Wantedly Visit ʹ͓͚ΔਪનγεςϜͷ։ൃͳͲΛ୲౰ @yu-ya4 @yu__ya4 ࣗݾ঺հ

Slide 5

Slide 5 text

©2021 Wantedly, Inc. ձࣾ঺հ "γΰτͰίίϩΦυϧͻͱΛ;΍͢" "CREATE A WORLD WHERE WORK DRIVES PASSION"

Slide 6

Slide 6 text

©2021 Wantedly, Inc. ձࣾ๚໰ΞϓϦ Wantedly Visit

Slide 7

Slide 7 text

©2021 Wantedly, Inc. ϓϩμΫτʹ͓͚ΔσʔλαΠΤϯεͷऔΓ૊Έࣄྫ

Slide 8

Slide 8 text

©2021 Wantedly, Inc. Ϣʔβ͝ͱʹ࠷దԽ͞Εͨίϯςϯπͷਪન Ϣʔβʹద੾ͳίϯςϯπΛఏڙͯ͠ ཧ૝ͷϚονϯάΛ࣮ݱ͢ΔͨΊͷ༷ʑͳਪનγεςϜ ࣗવݴޠॲཧ΍ػցֶशͳͲ༷ʑͳٕज़Λ׆༻

Slide 9

Slide 9 text

©2021 Wantedly, Inc. ϢʔβͷʮڵຯʯʹΑΔϚονϯά Ϣʔβ͕બ୒ͨ͠ʮڵຯʯʹجͮ͘ืूͱͷϚονϯά ʮ৬छʯͳͲʹΑΔϑΟϧλϦϯάͷΈͰ͸ݟ͚ͭΒΕͳ ͍ΑΓϢʔβͷᅂ޷ʹ߹ͬͨืूΛਪન͢Δ

Slide 10

Slide 10 text

©2021 Wantedly, Inc. ΞΧσϛΞʹ͓͚Δ׆ಈ

Slide 11

Slide 11 text

©2021 Wantedly, Inc. ࠃࡍֶձ΁ͷௌߨࢀՃ / ࿦จಡΈձΠϕϯτͷاըӡӦ

Slide 12

Slide 12 text

©2021 Wantedly, Inc. ֶձซઃίϯϖςΟγϣϯͰͷೖ৆ɾ࿦จ౤ߘɾൃද

Slide 13

Slide 13 text

©2021 Wantedly, Inc. DEIM ΁ͷڠࢍ / ٕज़ใࠂ https://db-event.jpn.org/deim2020/

Slide 14

Slide 14 text

©2021 Wantedly, Inc. 1. ͸͡Ίʹ • ࣗݾ঺հɺձࣾͱϓϩμΫτͷ঺հ • ϓϩμΫτʹ͓͚ΔσʔλαΠΤϯεͷऔΓ૊Έࣄྫ • ΞΧσϛΞʹ͓͚Δ׆ಈ 2. ૬ޓਪનγεςϜͱ͸ • ૬ޓਪનγεςϜͷ֓ཁɾಛ௃ • طଘख๏ͷ঺հ 3. ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ • Wantedly Visit ͷσʔλʹରͯ͠طଘख๏Λద༻࣮ͨ͠ݧɾߟ࡯ • ࣮ݧ݁ՌΛड͚ͨվྑख๏ͷఏҊɾ࣮ݧɾߟ࡯ ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ

Slide 15

Slide 15 text

©2021 Wantedly, Inc. User Item ैདྷͷҰൠతͳਪનγεςϜ ૬ޓਪનγεςϜ User(Female) User(Male) User(Job Seeker) User(Recruiter/Company) ex. Amazon, Netflix ex. Tinder, Pairs ex. Wantedly, LinkedIn ૬ޓਪનγεςϜʢReciprocal Recommender Systemsʣͱ͸ʁ ʮαʔϏε಺ͷϢʔβΛޓ͍ʹਪન͢ΔγεςϜʯ ਪન ਪન ਪન

Slide 16

Slide 16 text

©2021 Wantedly, Inc. ૬ޓਪનγεςϜʹ͓͚Δਪનͷ"੒ޭ" ͓ޓ͍ͷᅂ޷͕Ұகͯ͠ॳΊͯਪન͕"੒ޭ"ͨ͜͠ͱʹͳΔ User Item ैདྷͷҰൠతͳਪનγεςϜ ૬ޓਪનγεςϜ User User ߪೖ ⭕ ⭕ Like Nope User User Like Like

Slide 17

Slide 17 text

©2021 Wantedly, Inc. User A to User B Preference Score User B to User A Preference Score Reciprocal Preference Score Aggregation 1. γεςϜ಺ͷϢʔβ͸ A ͱ B ͷ̎ͭͷάϧʔϓʹ෼͔Ε͓ͯΓɺҟͳΔάϧʔϓͷϢʔβ͕ޓ͍ਪન͞ΕΔ ΋ͷͱ͢Δɻʢe.g. σʔςΟϯάαʔϏεʹ͓͚ΔஉঁɺٻਓαʔϏεʹ͓͚Δٻ৬ऀͱاۀʣ 2. ୯ํ޲ͷᅂ޷ͷେ͖͞Λද͢ Preference Score ΛɺA ͔Β B ΁ͷϢʔβٴͼ B ͔Β A ͷϢʔβͷͦΕͧΕ ʹ͍ͭͯܭࢉ 3. Aggregation Function Λར༻ͯ͠ɺ̎ͭͷ Preference Score Λ૊Έ߹Θͤͯ૒ํ޲ͷᅂ޷ͷେ͖͞Λද͢ Reciprocal Preference Score Λܭࢉ ૬ޓਪનγεςϜʹ͓͚Δᅂ޷ͷ༧ଌ

Slide 18

Slide 18 text

©2021 Wantedly, Inc. ✓ [RECON] (Pizzato 2010) ‣ ϢʔβͷϓϩϑΟʔϧ৘ใΛར༻ͨ͠ίϯςϯπϕʔεϑΟϧλϦϯάͰ Preference Score Λࢉग़ ‣ Aggregation Function ʹ͸ௐ࿨ฏۉΛར༻ ✓ [RCF] (Xia 2015) ‣ ߦಈཤྺʹجͮ͘ϝϞϦϕʔεͷϢʔβϕʔεڠௐϑΟϧλϦϯάʢk-ۙ๣ʣͰ Preference Score Λࢉग़ ✓ [LFRR](Neve 2019) ‣ ߦಈཤྺʹج͖ͮ࡞੒ͨ͠ User-User ߦྻʹ Matrix Factorization Λద༻ͯ͠ Preference Score Λࢉग़ ‣ Aggregation Function ʹ͍ͭͯɼௐ࿨ฏۉҎ֎ͷؔ਺ʹ͍ͭͯ΋ൺֱ࣮ݧ ✓ [ImRec](Neve 2020) ‣ ϢʔβͷϓϩϑΟʔϧը૾Λར༻ͨ͠ίϯςϯπϕʔεϑΟϧλϦϯάͰ Preference Score Λࢉग़ ૬ޓਪનγεςϜʹ͓͚Δᅂ޷ͷ༧ଌͷطଘख๏

Slide 19

Slide 19 text

©2021 Wantedly, Inc. 1. ͸͡Ίʹ • ࣗݾ঺հɺձࣾͱϓϩμΫτͷ঺հ • ϓϩμΫτʹ͓͚ΔσʔλαΠΤϯεͷऔΓ૊Έࣄྫ • ΞΧσϛΞʹ͓͚Δ׆ಈ 2. ૬ޓਪનγεςϜͱ͸ • ૬ޓਪનγεςϜͷ֓ཁɾಛ௃ • طଘख๏ͷ঺հ 3. ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ • Wantedly Visit ͷσʔλʹରͯ͠طଘख๏Λద༻࣮ͨ͠ݧɾߟ࡯ • ࣮ݧ݁ՌΛड͚ͨվྑख๏ͷఏҊɾ࣮ݧɾߟ࡯ ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ

Slide 20

Slide 20 text

©2021 Wantedly, Inc. A. Wantedly Visit ͷσʔλʹରͯ͠طଘख๏Λద༻࣮ͨ͠ݧɾߟ࡯ B. ࣮ݧ݁ՌΛड͚ͨվྑख๏ͷఏҊɾ࣮ݧɾߟ࡯ ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ

Slide 21

Slide 21 text

©2021 Wantedly, Inc. • طଘख๏ʹ͓͚ΔධՁ࣮ݧ͸σʔςΟϯάαʔϏεʹ͓͚Δ΋ͷ͕ଟ͍ɻ ➡ ٻਓαʔϏεͷ࿮૊ΈͰ͋Δ Wantedly Visit ͷσʔλͰͷ࣮ݧʹҰఆͷՁ஋͕͋ΔͷͰ͸ʁ • Wantedly Visit ͸ҰൠతͳٻਓαʔϏεΑΓ΋ΧδϡΞϧʹϢʔβ͕ߦಈ͢Δ αʔϏεͰ͋ΔͨΊɺൺֱతϢʔβͱاۀؒͷߦಈϩά͕ଟ͍ɻ ➡ ڠௐϑΟϧλϦϯάϕʔεͷطଘख๏Λͦͷ··ద༻ͯ͠΋Ұఆͷੑೳ͕ग़ΔͷͰ͸ʁ • ݱࡏͷطଘख๏͸ൺֱతφΠʔϒͳ΋ͷͰ͋ΔͨΊɺվྑͷ༨஍͕͋Δɻ ➡ طଘख๏Ͱͷ࣮ݧΛ௨ͯ͠վྑख๏ΛఏҊͰ͖ΔͷͰ͸ʁ Ϟνϕʔγϣϯ

Slide 22

Slide 22 text

©2021 Wantedly, Inc. A. Wantedly Visit ͷσʔλʹରͯ͠طଘख๏Λద༻࣮ͨ͠ݧɾߟ࡯ B. ࣮ݧ݁ՌΛड͚ͨվྑख๏ͷఏҊɾ࣮ݧɾߟ࡯ ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ

Slide 23

Slide 23 text

©2021 Wantedly, Inc. • Preference Score ༧ଌܭࢉͷͨΊͷΞϧΰϦζϜ • ߦಈཤྺʹجͮ͘ϝϞϦϕʔεͷϢʔβϕʔεڠௐϑΟϧλϦϯά [RCF] (Xia 2015) • ߦಈཤྺʹج͖ͮ࡞੒ͨ͠ User-User ߦྻʹ Matrix Factorization Λద༻ [LFRR](Neve 2019) • Aggregation Function • (Neve 2019)Ͱ࣮ݧ͞Ε͍ͯͨ4छྨ • Arithmetic Mean (AM) • Geometric Mean (GM) • Harmonic Mean (HM) • Cross-Ratio Uninorm (CRU) ࣮ݧ͢Δطଘख๏ User A to User B Preference Score User B to User A Preference Score Reciprocal Preference Score Aggregation Function CRU:

Slide 24

Slide 24 text

©2021 Wantedly, Inc. ࣮ݧ֓ཁ Wantedly Visit ʹ͓͚ΔϢʔβͱاۀͷ Matching Λ༧ଌ Company User Ԡื ϝοηʔδฦ৴ Company User εΧ΢τૹ৴ ϝοηʔδฦ৴ Company User Ԡื ӾཡͷΈ Company User εΧ΢τૹ৴ ӾཡͷΈ • Ϣʔβ͕Ԡื or اۀ͕εΧ΢τૹ৴ͨ͠ࡍʹ૬ख͕ϝοηʔδΛฦ৴͢Ε͹ Match (positive) • Ԡื or εΧ΢τૹ৴Λ૬ख͕Ӿཡ্ͨ͠ͰϝοηʔδΛฦ৴͠ͳ͚Ε͹ Not Match (negative) Match Not Match

Slide 25

Slide 25 text

©2021 Wantedly, Inc. ᅂ޷σʔλ/ධՁ஋ • Ϣʔβͷᅂ޷σʔλ • اۀ΁ͷԠื • اۀ͔ΒͷεΧ΢τૹ৴ʹର͢Δϝοηʔδฦ৴ • اۀͷᅂ޷σʔλ • Ϣʔβ΁ͷεΧ΢τૹ৴ • Ϣʔβ͔ΒͷԠืʹର͢Δϝοηʔδฦ৴ • ධՁ஋: Ϣʔβͱاۀͷ૊ʹରͯ͠༩͑ΒΕΔ (boolean) • Ϣʔβ͕Ԡื or اۀ͕εΧ΢τૹ৴ͨ͠ࡍʹ૬ख͕ϝοηʔδΛฦ৴͢Ε͹ Match (positive) • Ԡื or εΧ΢τૹ৴Λ૬ख͕Ӿཡ্ͨ͠ͰϝοηʔδΛฦ৴͠ͳ͚Ε͹ Not Match (negative) • Ԡื or εΧ΢τૹ৴͕ൃੜ͕ͨ͠૬ख͕Ӿཡ͍ͯ͠ͳ͍΋ͷͷධՁ஋͸ෆ໌ʢະධՁʣ

Slide 26

Slide 26 text

©2021 Wantedly, Inc. ࣮ݧσʔλ • Wantedly Visit ʹ͓͚Δ 2019/11 - 2020/10 ͷ1೥෼ͷߦಈϩά • ৬छΛʮΤϯδχΞʯʹઃఆ͍ͯ͠ΔϢʔβ • ืू৬छΛʮΤϯδχΞʯʹઃఆ͍ͯ͠Δاۀʢืूʣ • ֘౰ظؒதʹ5݅Ҏ্ͷᅂ޷σʔλΛ༗͢ΔϢʔβͱاۀ • ֘౰ظؒதʹ100݅Ҏ্ͷᅂ޷σʔλΛ༗͢ΔϢʔβΛআ֎

Slide 27

Slide 27 text

©2021 Wantedly, Inc. ධՁ • ධՁ஋͕ෆ໌Ͱͳ͍Ϣʔβͱاۀͷ૊ͷ͏ͪ10%Λςετσʔλͱͯ͠ར༻ • ༧ଌ͞Εͨ Reciprocal Preference Score Λ AUC ͰධՁ

Slide 28

Slide 28 text

©2021 Wantedly, Inc. ࣮ݧ݁Ռ AUC AM GM HM CRU RCF 0.558 0.618 0.639 0.616 LFRR 0.475 0.578 0.622 0.552 RCF LFRR • طଘݚڀͱಉ༷ɺHM(ௐ࿨ฏۉ)͕΋ͬͱ΋ߴ͍ੑೳʹ • طଘݚڀͱҟͳΓɺLFRR ΑΓ΋ RCF ͷํ͕ߴ͍ੑೳʹ • طଘख๏ͷ࿦จͷ࣮ݧͱൺ΂ͯ΋ܦݧతʹ΋ AUC ͷ஋͕ খ͍͞ Aggregation Function Algorithm

Slide 29

Slide 29 text

©2021 Wantedly, Inc. ߟ࡯ɾԾઆ طଘख๏ͷ࿦จͷ࣮ݧͱൺ΂ͯ΋ܦݧతʹ΋ AUC ͷ஋͕খ͍͞ • Ϣʔβ͔Βاۀɺاۀ͔ΒϢʔβͱ͍͏ҟͳΔ Preference Score Λ୯७ͳ Aggregation Function ʹ͔͚͍ͯΔͷ͕ྑ͘ͳ͍ʁ • ୯ํ޲ͷ Preference Score ͷ༧ଌͷ࣌఺Ͱਫ਼౓͕ྑ͘ͳ͍ʁ

Slide 30

Slide 30 text

©2021 Wantedly, Inc. ߟ࡯ɾԾઆ طଘख๏ͷ࿦จͷ࣮ݧͱൺ΂ͯ΋ܦݧతʹ΋ AUC ͷ஋͕খ͍͞ • Ϣʔβ͔Βاۀɺاۀ͔ΒϢʔβͱ͍͏ҟͳΔ Preference Score Λ୯७ͳ Aggregation Function ʹ͔͚͍ͯΔͷ͕ྑ͘ͳ͍ʁ • ͦΕͧΕͷ෼෍΍εέʔϧ͕ҟͳΔ • ಉ͡஋Λऔ͍ͬͯΔ͔Βͱ͍ͬͯɺಉ͘͡Β͍ͷᅂ޷ͷେ͖͞Λද͢ͷ͔ʁ • ୯ํ޲ͷ Preference Score ͷ༧ଌͷ࣌఺Ͱਫ਼౓͕ྑ͘ͳ͍ʁ

Slide 31

Slide 31 text

©2021 Wantedly, Inc. ߟ࡯ɾԾઆ طଘख๏ͷ࿦จͷ࣮ݧͱൺ΂ͯ΋ܦݧతʹ΋ AUC ͷ஋͕খ͍͞ • Ϣʔβ͔Βاۀɺاۀ͔ΒϢʔβͱ͍͏ҟͳΔ Preference Score Λ୯७ͳ Aggregation Function ʹ͔͚͍ͯΔͷ͕ྑ͘ͳ͍ʁ • ୯ํ޲ͷ Preference Score ͷ༧ଌͷ࣌఺Ͱਫ਼౓͕ྑ͘ͳ͍ʁ

Slide 32

Slide 32 text

©2021 Wantedly, Inc. ߟ࡯ɾԾઆ ୯ํ޲ͷ Preference Score ͷ༧ଌͷ࣌఺Ͱਫ਼౓͕ྑ͘ͳ͍ʁ • Ϣʔβͷ༧ଌ Preferenc Score ٴͼ اۀͷ༧ଌ Preference Score ΛͦΕͧΕධՁ AUC Ϣʔβ اۀ RCF 0.850 0.737 LFRR 0.833 0.727 Subject Algorithm → اۀͷ Preference Score ͷ༧ଌਫ਼౓͕௿͍

Slide 33

Slide 33 text

©2021 Wantedly, Inc. ߟ࡯ɾԾઆ ͳͥاۀͷ Preference Score ͷ༧ଌਫ਼౓͕௿͍ͷ͔ • اۀͷᅂ޷σʔλ͸Ϣʔβʹൺ΂ͯগͳ͍ • اۀͷᅂ޷Λڧ͘ද͢ೳಈతͳᅂ޷σʔλʢεΧ΢τૹ৴ʣͷର৅ͱͳΔϢʔβ਺͕গͳ͍ • डಈతͳᅂ޷σʔλΑΓ΋ೳಈతͳᅂ޷σʔλͷํ͕ڧ͘Ϣʔβͷᅂ޷Λද͢ͷͰ͸ͳ͍͔ʁ • اۀͷडಈతͳᅂ޷σʔλʢϢʔβͷԠืʹର͢Δϝοηʔδฦ৴ʣͷର৅ͱͳΔϢʔβ਺ ͸ଟ͍͕ɺ͋·Γᅂ޷Λද͍ͤͯͳ͍ • Ϣʔβʹൺ΂ͯɺاۀ͸͋·Γᅂ޷ʹ߹͍ͬͯͳ͍Ϣʔβʹରͯ͠΋ϝοηʔδฦ৴Λߦ͏ʁ

Slide 34

Slide 34 text

©2021 Wantedly, Inc. ݱঢ়ͷ໰୊ • ҙຯ߹͍ͷҟͳΔ̎ͭͷ Preference Score Λಉ౳ʹѻ͍ͬͯΔ • اۀͷ Preference Score ͷ༧ଌਫ਼౓͕௿͍

Slide 35

Slide 35 text

©2021 Wantedly, Inc. A. Wantedly Visit ͷσʔλʹରͯ͠طଘख๏Λద༻࣮ͨ͠ݧɾߟ࡯ B. ࣮ݧ݁ՌΛड͚ͨվྑख๏ͷఏҊɾ࣮ݧɾߟ࡯ ձࣾ๚໰ΞϓϦʮWantedly VisitʯͷσʔλͰݟΔ૬ޓਪનγεςϜ

Slide 36

Slide 36 text

©2021 Wantedly, Inc. ఏҊख๏ᶃ • εέʔϧΛ͋ΘͤΔ͜ͱͰ̎ͭͷ Preference Score ΛൺֱՄೳͳঢ়ଶʹ্ͨ͠Ͱ Aggregation Function ʹ͔͚Δɻ • اۀɾϢʔβ͝ͱʹ Preference Score Λ MinMaxScaler ʹ͔͚Δɻ Ϣʔβͱاۀͷ Preference Score ͷεέʔϧΛ߹ΘͤΔʢScalerʣ

Slide 37

Slide 37 text

©2021 Wantedly, Inc. ఏҊख๏ᶄ ෛͷᅂ޷σʔλΛ׆༻͢ΔʢNegʣ • Ϣʔβ/اۀͷᅂ޷ΛΑΓਖ਼֬ʹ༧ଌ͢ΔͨΊɺԠื/εΧ΢τૹ৴ ͞ΕͯӾཡ͕ͨ͠ϝο ηʔδฦ৴͠ͳ͔ͬͨͱ͍͏ෛͷᅂ޷σʔλΛར༻ • ͜Ε·Ͱͷਖ਼ͷᅂ޷σʔλΛར༻ͨ͠ਖ਼ͷ Preference Score ͷ༧ଌʹՃ͑ɺෛͷ Preference Score Λܭࢉ͢Δɻ • ਖ਼ͱෛͷ༧ଌ Preference Score Λ଍͠߹Θͤͯ༧ଌ Preference Score Λܭࢉ

Slide 38

Slide 38 text

©2021 Wantedly, Inc. ࣮ݧ݁Ռɾߟ࡯ʢ୯ํ޲ͷᅂ޷: Preference Scoreʣ • اۀͷ Preference Score ͷ༧ଌਫ਼౓͕େ͖͘վળ • Ϣʔβͷ Preference Score ͷ༧ଌਫ਼౓͸اۀʹൺ΂Δͱ͋·Γվળͤͣ • Ϣʔβ͸ᅂ޷ʹؔ܎ͳ͘ϝοηʔδΛฦ৴͠ͳ͍͜ͱ͕ଟ͍ͨΊɺෛͷ Preference Score ͷޮՌ ͕খ͍͞ʁʢe.g. ΊΜͲ͍͔͘͞Βϝοηʔδฦ৴͠ͳ͍ʣ AUC Ϣʔβ اۀ RCF 0.850 0.737 LFRR 0.833 0.727 LFRR + Scaler + Neg 0.850 0.817 Subject Algorithm

Slide 39

Slide 39 text

©2021 Wantedly, Inc. ࣮ݧ݁Ռɾߟ࡯ʢMatching: Reciprocal Preference Scoreʣ AUC AM GM HM CRU RCF 0.558 0.618 0.639 0.616 LFRR 0.475 0.578 0.622 0.552 LFRR + Scaler 0.536 0.619 0.639 0.603 LFRR + Scaler + Neg 0.543 0.686 0.712 0.674 LFRR + Scaler + Neg Aggregation Function Algorithm • ఏҊख๏Ͱ͋Δ LFRR + Scaler + Neg ͱ HM ͷ૊Έ߹Θ͕ͤ࠷΋ߴ͍ੑೳʹ • Scaler ͷΈͷద༻Ͱ΋༧ଌੑೳͷ޲্͕֬ೝͰ͖Δ • ґવɺAUC ͸͞΄Ͳେ͖͘ͳ͍ɻ • Preference Score ͷ༧ଌܭࢉ΍ Aggregation Function ʹ΋ͬͱߴ౓ͳΞϧΰϦζϜΛར༻͢Δɻ • ೳಈతͳᅂ޷σʔλͱडಈతͳᅂ޷σʔλͷॏΈΛมֶ͑ͯश͢Δɻ

Slide 40

Slide 40 text

©2021 Wantedly, Inc. ·ͱΊ A. Wantedly Visit ͷσʔλʹରͯ͠طଘख๏Λద༻࣮ͨ͠ݧɾߟ࡯ • ઌߦݚڀͱྨࣅ͢ΔΑ͏ͳ࣮ݧ݁Ռ • શମతʹ༧ଌਫ਼౓͕௿͍ • Ϣʔβ͔Βاۀɺاۀ͔ΒϢʔβͱ͍͏ҟͳΔ Preference Score Λ୯७ͳ Aggregation Function ʹ ͔͚͍ͯΔ͜ͱ͕ྑ͘ͳ͍ʁ • اۀͷ Preference Score ͷ༧ଌਫ਼౓͕௿͍͜ͱ͕ྑ͘ͳ͍ʁ B. ࣮ݧ݁ՌΛड͚ͨվྑख๏ͷఏҊɾ࣮ݧɾߟ࡯ • ख๏ͷఏҊ • Ϣʔβͱاۀͷ Preference Score ͷεέʔϧΛ߹ΘͤΔʢScalerʣ • ෛͷᅂ޷σʔλΛ׆༻͢ΔʢNegʣ • ఏҊख๏͕طଘख๏ͷੑೳΛ্ճͬͨ

Slide 41

Slide 41 text

©2021 Wantedly, Inc. 3FGT • (Pizzato 2010) Luiz Pizzato, Tomek Rej, Thomas Chung, Irena Koprinska, and Judy Kay. 2010. RECON: a reciprocal recommender for online dating. Proceedings of the fourth ACM conference on Recommender systems P. 207-214. • (Pizzato 2012) Luiz Pizzato, Tomasz Rej, Joshua Akehurst, Irena Koprinska, Kalina Yacef, and Judy Kay. 2012. Recommending people to people: the nature of reciprocal recommenders with a case study in online dating. User Model User-Adap Inter (2013) 23: 447. • (Xia 2015) Peng Xia, Benyuan Liu, Yizhou Sun, and Cindy Chen. 2015. Reciprocal Reciprocal recommendation System for Online Dating. Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining P. 234-241. • (Neve 2019) J Neve, I Palomares.2019. Latent Factor Models and Aggregation Operators for Collaborative Filtering in Reciprocal Recommender Systems Proceedings of the 13th ACM Conference on Recommender Systems, 219-227. • (Neve 2020) J Neve, R McConville.2020. ImRec: Learning Reciprocal Preferences Using Images. Proceedings of the 14th ACM Conference on Recommender Systems, 170-179.