Slide 1

Slide 1 text

Analysis and Application of PDEs with Random Parameters Bettina Schieche Graduate School of Computational Engineering Numerical Analysis and Scientific Computing Technische Universit¨ at Darmstadt Numerical Analysis European Seminar on Computing Pilsen, Czech Republic, June 25 - 29, 2012 www.graduate-school-ce.de June 26, 2012

Slide 2

Slide 2 text

Outline Motivation for PDEs with Random Parameters Adaptive Stochastic Collocation Method Adjoint Error Estimation Bettina Schieche — ESCO 2012 — 2/17

Slide 3

Slide 3 text

Overview Motivation for PDEs with Random Parameters Adaptive Stochastic Collocation Method Adjoint Error Estimation Bettina Schieche — ESCO 2012 — 3/17

Slide 4

Slide 4 text

General Setting: Arbitrary PDE Describing parameters: Boundary and initial conditions Material properties Forcing terms / source terms Topology (geometry of the system) Bettina Schieche — ESCO 2012 — 4/17

Slide 5

Slide 5 text

Sources of Uncertainties Natural fluctuations (e.g. speed of wind) Human-made fluctuations (e.g. fabrication processes) Lack of knowledge (e.g. spread of ash cloud) Lack of accuracy (e.g. errors of measurements) Bettina Schieche — ESCO 2012 — 5/17

Slide 6

Slide 6 text

Sources of Uncertainties Natural fluctuations (e.g. speed of wind) Human-made fluctuations (e.g. fabrication processes) Lack of knowledge (e.g. spread of ash cloud) Lack of accuracy (e.g. errors of measurements) → PDE with additional dimensions: space, time + parameter space Bettina Schieche — ESCO 2012 — 5/17

Slide 7

Slide 7 text

Overview Motivation for PDEs with Random Parameters Adaptive Stochastic Collocation Method Adjoint Error Estimation Bettina Schieche — ESCO 2012 — 6/17

Slide 8

Slide 8 text

How to Discretize the Random Parameter Space? 1. Choose P parameter realizations → collocation points on a sparse grid Bettina Schieche — ESCO 2012 — 7/17

Slide 9

Slide 9 text

How to Discretize the Random Parameter Space? 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, ξ(j)) = f, j = 1, . . . , P Bettina Schieche — ESCO 2012 — 7/17

Slide 10

Slide 10 text

How to Discretize the Random Parameter Space? 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, ξ(j)) = f, j = 1, . . . , P 3. Interpolate all solutions Bettina Schieche — ESCO 2012 — 7/17

Slide 11

Slide 11 text

How to Discretize the Random Parameter Space? 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, ξ(j)) = f, j = 1, . . . , P 3. Interpolate all solutions 4. Calculate statistics Bettina Schieche — ESCO 2012 — 7/17

Slide 12

Slide 12 text

How to Discretize the Random Parameter Space? 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, ξ(j)) = f, j = 1, . . . , P 3. Interpolate all solutions 4. Calculate statistics 5. Add new collocation points adaptively Bettina Schieche — ESCO 2012 — 7/17

Slide 13

Slide 13 text

How to Discretize the Random Parameter Space? 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, ξ(j)) = f, j = 1, . . . , P 3. Interpolate all solutions 4. Calculate statistics 5. Add new collocation points adaptively Bettina Schieche — ESCO 2012 — 7/17

Slide 14

Slide 14 text

How to Discretize the Random Parameter Space? 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, ξ(j)) = f, j = 1, . . . , P 3. Interpolate all solutions 4. Calculate statistics 5. Add new collocation points adaptively Bettina Schieche — ESCO 2012 — 7/17

Slide 15

Slide 15 text

How to Discretize the Random Parameter Space? 1. Choose P parameter realizations → collocation points on a sparse grid 2. Solve P deterministic problems A(uj, ξ(j)) = f, j = 1, . . . , P 3. Interpolate all solutions 4. Calculate statistics 5. Add new collocation points adaptively Error indicator: relative change of the interpolation Bettina Schieche — ESCO 2012 — 7/17

Slide 16

Slide 16 text

Setting: Heat Conduction in an Electronic Chip ↑ ↑ ∂t T − ∇ · (α∇T) = 0 Cavity: heat flux into the domain Remaining boundary: adiabatic Xiu, D. and Karniadakis, G. (2003), ’A new stochastic approach to transient heat conduction modeling with uncertainty’, International Journal of Heat and Mass Transfer 46(24), 4681-4693. Bettina Schieche — ESCO 2012 — 8/17

Slide 17

Slide 17 text

Setting: Heat Conduction in an Electronic Chip ↑ ↑ ∂t T − ∇ · (α∇T) = 0 Cavity: heat flux into the domain Remaining boundary: adiabatic α random field: α(x, ξ1, ξ2, ξ3) = E[α] + σ 3 n=1 fn(x)ξn Xiu, D. and Karniadakis, G. (2003), ’A new stochastic approach to transient heat conduction modeling with uncertainty’, International Journal of Heat and Mass Transfer 46(24), 4681-4693. Bettina Schieche — ESCO 2012 — 8/17

Slide 18

Slide 18 text

Setting: Heat Conduction in an Electronic Chip ↑ ↑ ∂t T − ∇ · (α∇T) = 0 Cavity: heat flux into the domain Remaining boundary: adiabatic α random field: α(x, ξ1, ξ2, ξ3) = E[α] + σ 3 n=1 fn(x)ξn ξn independent, uniformly distributed Xiu, D. and Karniadakis, G. (2003), ’A new stochastic approach to transient heat conduction modeling with uncertainty’, International Journal of Heat and Mass Transfer 46(24), 4681-4693. Bettina Schieche — ESCO 2012 — 8/17

Slide 19

Slide 19 text

Setting: Heat Conduction in an Electronic Chip ↑ ↑ ∂t T − ∇ · (α∇T) = 0 Cavity: heat flux into the domain Remaining boundary: adiabatic α random field: α(x, ξ1, ξ2, ξ3) = E[α] + σ 3 n=1 fn(x)ξn ξn independent, uniformly distributed E[α] = 1, σ = 0.2 Xiu, D. and Karniadakis, G. (2003), ’A new stochastic approach to transient heat conduction modeling with uncertainty’, International Journal of Heat and Mass Transfer 46(24), 4681-4693. Bettina Schieche — ESCO 2012 — 8/17

Slide 20

Slide 20 text

Adaptive Stochastic Collocation: First Results Stochastic collocation approximation → Thξ Results at time t = 1: Expected Value Standard Deviation Bettina Schieche — ESCO 2012 — 9/17

Slide 21

Slide 21 text

Adaptive Stochastic Collocation: First Results Stochastic collocation approximation → Thξ Results at time t = 1: Expected Value Standard Deviation (0, 0) Quantity of interest: Q(T) = Var[ 1 0 T|x=(0,0) dt] Aim: Q(T) − Q(Thξ ) ! < TOL = 10−3 Bettina Schieche — ESCO 2012 — 9/17

Slide 22

Slide 22 text

Error Indicator versus Exact Error 1 2 3 4 5 10−4 10−3 10−2 10−1 100 P = 47 P = 31 adaptive stochastic collocation iterations relative error of Q indicator exact ⇒ More collocation points than necessary → TOL Bettina Schieche — ESCO 2012 — 10/17

Slide 23

Slide 23 text

Overview Motivation for PDEs with Random Parameters Adaptive Stochastic Collocation Method Adjoint Error Estimation Bettina Schieche — ESCO 2012 — 11/17

Slide 24

Slide 24 text

Stochastic Adjoint Error Estimation Error: Q(T) − Q(Thξ ) = ? Bettina Schieche — ESCO 2012 — 12/17

Slide 25

Slide 25 text

Stochastic Adjoint Error Estimation Error: Q(T) − Q(Thξ ) = ? Solve additional stochastic equation = adjoint problem A(T, ξ) = f ↔ A∗(φ, ξ) = g Bettina Schieche — ESCO 2012 — 12/17

Slide 26

Slide 26 text

Stochastic Adjoint Error Estimation Error: Q(T) − Q(Thξ ) = ? Solve additional stochastic equation = adjoint problem A(T, ξ) = f ↔ A∗(φ, ξ) = g Residual: Res(Thξ ) = f − A(Thξ ) Bettina Schieche — ESCO 2012 — 12/17

Slide 27

Slide 27 text

Stochastic Adjoint Error Estimation Error: Q(T) − Q(Thξ ) = ? Solve additional stochastic equation = adjoint problem A(T, ξ) = f ↔ A∗(φ, ξ) = g Residual: Res(Thξ ) = f − A(Thξ ) Error estimate: Q(T) − Q(Thξ ) = E[φRes(Thξ )] Bettina Schieche — ESCO 2012 — 12/17

Slide 28

Slide 28 text

Stochastic Adjoint Error Analysis Error splitting: Q(T) − Q(Thξ ) joint error = Q(T) − Q(Tξ) stochastic error + Q(Tξ) − Q(Thξ ) deterministic error Bettina Schieche — ESCO 2012 — 13/17

Slide 29

Slide 29 text

Stochastic Adjoint Error Analysis Error splitting: Q(T) − Q(Thξ ) joint error = Q(T) − Q(Tξ) stochastic error + Q(Tξ) − Q(Thξ ) deterministic error 0 10 20 30 40 50 0 0.2 0.4 0.6 0.8 1 number of adjoint collocation points error estimate / exact error deterministic error joint error ⇒ Much effort to capture stochastic error ⇒ Few effort to capture deterministic error Bettina Schieche — ESCO 2012 — 13/17

Slide 30

Slide 30 text

Idea: Order Reduction of Adjoint Problem Proper Orthogonal Decomposition (POD) 1. One iteration of stochastic collocation: A(ξ(j))Uj = F 2. Adjoint solutions in these collocation points: A∗(ξ(j))Φj = G 3. Snapshot matrix S = (Φ1, · · · , ΦP) 4. Singular value decomposition of S → reduced basis ϕ 5. Galerkin projection onto ϕ: A∗ R (ξ)ΦR(ξ) = GR, dim(A∗ R ) dim(A∗) (1) 6. Evaluation of (1) in many adjoint collocation points Bettina Schieche — ESCO 2012 — 14/17

Slide 31

Slide 31 text

Error Indicator versus Adjoint Error Estimator 1 2 3 4 5 10−4 10−3 10−2 10−1 100 P = 47 P = 31 adaptive stochastic collocation iterations relative error of Q indicator exact reduced adjoint ⇒ Reduced adjoints very close to exact error → TOL Bettina Schieche — ESCO 2012 — 15/17

Slide 32

Slide 32 text

POD Modes of the Stochastic Adjoint Solution 1 2 3 4 5 6 7 8 9 Bettina Schieche — ESCO 2012 — 16/17

Slide 33

Slide 33 text

Conclusion & Outlook Stochastic collocation results in a set of deterministic equations. Full adjoint stochastic collocation is usually not practicable. Reduced order models can reduce computational costs. Bettina Schieche — ESCO 2012 — 17/17

Slide 34

Slide 34 text

Conclusion & Outlook Stochastic collocation results in a set of deterministic equations. Full adjoint stochastic collocation is usually not practicable. Reduced order models can reduce computational costs. ⇒ Order reduction of the primal problem ⇒ Local reconstruction of adjoint solutions Bettina Schieche — ESCO 2012 — 17/17

Slide 35

Slide 35 text

Conclusion & Outlook Stochastic collocation results in a set of deterministic equations. Full adjoint stochastic collocation is usually not practicable. Reduced order models can reduce computational costs. ⇒ Order reduction of the primal problem ⇒ Local reconstruction of adjoint solutions The work is supported by the “Excellence Initiative“ of the German Federal and State Governments and the Graduate School of Computational Engineering at TU Darmstadt. Bettina Schieche — ESCO 2012 — 17/17