Slide 41
Slide 41 text
ࢀߟจݙ
• [Avramidis+2020]: Avramidis, E., Macketanz, V., Lommel, A., & Uszkoreit, H. (2018). Fine-grained evaluation of
Quality Estimation for Machine translation based on a linguistically motivated Test Suite. In Proceedings of the
AMTA 2018 Workshop on Translation Quality Estimation and Automatic Post-Editing (pp. 243–248). Association for
Machine Translation in the Americas.
• [Vaswani+2017]: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, ., & Polosukhin, I.
(2017). Attention Is All You Need. In Advances in Neural Information Processing Systems 31 (NIPS 2017) (pp. 5998–
6008).
• [Ott+2018]: Ott, M., Edunov, S., Grangier, D., & Auli, M. (2018). Scaling Neural Machine Translation. In Proceedings
of the Third Conference on Machine Translation: Research Papers (pp. 1–9). Association for Computational
Linguistics.
• [Xiong+2020]: Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, & Tie-Yan Liu (2020). On Layer Normalization in the Transformer Architecture. In Proceedings of
the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event (pp. 10524–
10533). PMLR.
• [Sennrich+2016]: Sennrich, R., Haddow, B., & Birch, A. (2016). Improving Neural Machine Translation Models with
Monolingual Data. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers) (pp. 86–96). Association for Computational Linguistics.
• [Edunov+2020]: Edunov, S., Ott, M., Ranzato, M., & Auli, M. (2020). On The Evaluation of Machine Translation
Systems Trained With Back-Translation. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics (pp. 2836–2846). Association for Computational Linguistics.
• [Bogoychev+2019]: Nikolay Bogoychev, & Rico Sennrich (2019). Domain, Translationese and Noise in Synthetic
Data for Neural Machine Translation CoRR, abs/1911.03362.
• [Freitag+2020]: Freitag, M., Grangier, D., & Caswell, I. (2020). BLEU might be Guilty but References are not
Innocent. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
(pp. 61–71). Association for Computational Linguistics.
46