Slide 5
Slide 5 text
Technical Details
Frontend:
Ruby on Rails[15]
Backend:
Groovy[14]
Titan[1][2][4][10][11][12][13]
Tinkerpop[3][5][6][7][8][9]
[1] Titan: http://github.com/thinkaurelius/titan
[2] Cassandra: http://cassandra.apache.org/
[3] Tinkerpop: http://www.tinkerpop.com/
[4] Titan: Big Graph Data with Cassandra: http://www.slideshare.net/knowfrominfo/titan-big-graph-data-with-cassandra
[5] P. Berkhin. Survey of clustering data mining techniques, 2002.
[6] R. Ng and J. Han. Efficient and effective clustering method for spatial data mining. VLDB, 144-155, 1994.
[7] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH : an efficient data clustering method for very large databases. SIGMOD, 103-114, 1996.
[8] S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm for large databases. SIGMOD, 73-84, 1998.
[9] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. KDD, 226-231, 1996.
[10] W. Wang, J. Yang, and R. Muntz. STING: a statistical information grid approach to spatial data mining. VLDB, 186-195, 1997.
[11] Peter Haider, Luca Chiarandini: Discriminative Clustering for Market Segmentation. KDD 2012.
[12] Jie Tang, Sen Wu, Jimeng Sun, Hang Su: Cross-domain Collaboration Recommendation. KDD 2012.
[13] Ming Ji, Jiawei Han, Marina Danilevsky: Ranking-based classification of heterogeneous information networks. KDD 2011
[14] Groovy: http://groovy.codehaus.org
[15] Ruby on Rails: http://rubyonrails.org