Slide 1

Slide 1 text

How we built our Analytics platform with JHipster and OSS technologies Deepu K Sasidharan XebiaLabs JHipster 2018

Slide 2

Slide 2 text

2 About me Deepu K Sasidharan JHipster co-lead developer Senior product developer @ XebiaLabs OSS aficionado, author, speaker @deepu105 deepu.js.org

Slide 3

Slide 3 text

Have you heard about XebiaLabs?

Slide 4

Slide 4 text

4 About XebiaLabs dev test uat prod [Cloud] Orchestration Stack Middleware NoSQL PaaS Containers OS OS OS IaaS Network Servers DB / Storage Security SOFTWARE DEFINED DATA CENTER / CLOUD RELEASE ORCHESTRATION Backlog Management Provisioning/ Configuration Security ITSM / Service Management CMDB plan Project Management Issue Tracking ALM DEPLOYMENT AUTOMATION code SCM Code Analysis build Continuous Integration Centralized Repository test Test Tooling Test Visualization release ChatOps / Collaboration Email/ phone/ Excel operate BI / Monitoring Logging DEVOPS INTELLIGENCE

Slide 5

Slide 5 text

5 Release Orchestration

Slide 6

Slide 6 text

6 Deployment automation

Slide 7

Slide 7 text

Have you used JHipster?

Slide 8

Slide 8 text

8 About JHipster Most popular Rapid Application Development platform for Java web applications and microservices ▪ 11k+ stars on GitHub ▪ 1.3M+ installations & 20k+ app generations per month ▪ 250k+ overall users ▪ 450+ contributors & 23 core team members ▪ 250+ companies using JHipster ▪ 70+ plugins Hel s e s!

Slide 9

Slide 9 text

9 What can you do with JHipster ▪ Generate simple monolith web applications ▪ Generate complete microservice architectures ▪ Generate domain model (entities) ▪ Generate CI/CD pipelines ▪ Deploy to AWS, GCP, Heroku, CF ▪ Deploy to Docker, Kubernetes, Openshift, Rancher https://start.jhipster.tech/#/statistics

Slide 10

Slide 10 text

Demo time Let us create a microservice e-commerce application and deploy it using Docker or Kubernetes

Slide 11

Slide 11 text

11 The application architecture

Slide 12

Slide 12 text

How long would it take?

Slide 13

Slide 13 text

13 JDL JHipster Domain Language JDL: https://goo.gl/csHzbz Reference: https://www.jhipster.tech/jdl/ Studio: https://start.jhipster.tech/jdl-studio/

Slide 14

Slide 14 text

14 JDL Application

Slide 15

Slide 15 text

15 JDL Entity & Relationship

Slide 16

Slide 16 text

Start your timer

Slide 17

Slide 17 text

17 JHipster magic $ jhipster import-jdl app.jdl

Slide 18

Slide 18 text

18 Deployment or

Slide 19

Slide 19 text

XL Impact DevOps Intelligence and Analytics

Slide 20

Slide 20 text

20 ▪ Goal-based DevOps KPIs ▪ Data-driven Recommendations and Decision Support ▪ Predictive Analytics that Identify Trends and Highlight Risk ▪ One Control Panel for DevOps Impact and ROI XL Impact

Slide 21

Slide 21 text

21 Architecture

Slide 22

Slide 22 text

22 Release pipeline

Slide 23

Slide 23 text

23 How JHipster helped ▪ Quick bootstrap ▪ Fast POC(Easy prototyping) ▪ OOB integrations(Hazelcast, Gradle, Spring boot, ElasticSearch, K8S etc) ▪ Best practices from the start ▪ JDL entities

Slide 24

Slide 24 text

24 Challenges ▪ Hazelcast cache clustering with Kubernetes ▪ ElasticSearch write performance ▪ Kafka sync issues ▪ On demand Spark clusters on Kubernetes ▪ Orchestration of Infra, services and crawlers to multiple environments(single tenant architecture) ▪ ES high availability on Kubernetes(no dynamic volume resizing)

Slide 25

Slide 25 text

25 Solutions ▪ Hazelcast cache clustering with Kubernetes − Kubernetes discovery API ▪ ElasticSearch write performance − SSD + Memory + lot of swearing ▪ Kafka reliability issues − Moved to Google PubSub ▪ On demand Spark clusters on Kubernetes − Custom images with lot of tweaks ▪ Orchestration of Infra, services and crawlers − XL Release + XL Deploy ▪ ES high availability on Kubernetes − Still not implemented

Slide 26

Slide 26 text

Thank you XebiaLabs website https://xebialabs.com/ JHipster website https://jhipster.tech GitHub https://github.com/jhipster/generator-jhipster Twitter https://twitter.com/java_hipster JHipster online https://start.jhipster.tech