Slide 17
Slide 17 text
Generalized Method of Moments (GMM) Estimation
QPCCEsP
(Mt, N, q, pobs, x, y, η, w, (¯
α)):
minimize
θ ∈ Υ; mc; ξ; ω; z
1
2
ξ ZξWξZξ
ξ + 1
2
ω ZωWωZω
ω
subject to • for all t = 1, · · · , T, j = 1, · · · , J, and f = 1, · · · , F :
Mt
N
N
i=1
πijt = qjt; pjt = pobs
jt
− mcjt
• for all t = 1, · · · , T; i = 1, · · · , N; and j = 1, · · · , J :
complementarity constraints in LCPNB
• 0 ≤ mcjt ≤ pobs
jt
• βik = ¯
βk + σβk ηik for k = 1, . . . , K,
• αi = exp(¯
α wi)
and • mcjt = yjt
φ + ωjt.