Slide 1

Slide 1 text

ааа Approaches for improving zT of thermoelectric materials Andrei Novitskii, Academic Research Center for Energy Efficiency, NUST MISIS Email: [email protected] @anovitzkij 1st Russian thermoelectric school September 10-12, 2021 ITMO Univesity sport center “Yagodnoe”, Russia

Slide 2

Slide 2 text

Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 2 What is the thermoelectric figure of merit? In 1909, the German engineer Edmund Altenkirch showed that the efficiency of a thermoelectric material is proportional to the square of the Seebeck coefficient, and the most efficient are those materials whose electrical and thermal conductivity ratio does not obey the Wiedemann-Franz law. He suggested the following figure of merit: 𝑧 = 𝛼2𝜎 𝜅 = 𝛼2 𝜅𝜌 here 𝑧 is the figure of merit (K–1), 𝛼 is the Seebeck coefficient, 𝜎 is the electrical conductivity, 𝜌 is the electrical resistivity, and 𝜅 is the total thermal conductivity, which represents the sum of the lattice and electronic contributions of the thermal conductivity 𝜅 = 𝜅𝑙𝑎𝑡 + 𝜅𝑒𝑙. In 1949 Ioffe proposed 𝑧𝑇 instead of 𝑧 as material’s thermoelectric figure of merit: 𝑧𝑇 = 𝛼2𝜎 𝜅 𝑇 = 𝛼2 𝜅𝜌 𝑇 A.F. Ioffe, Semiconductor Thermoelements, and Thermoelectric Cooling, Infosearch, London (1957). E. Altenkirch, Physikalische Zeitschrift 10, 560–580 (1909).

Slide 3

Slide 3 text

Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 3 What is the thermoelectric figure of merit? It is important to distinguish the material’s figure of merit 𝑧𝑇 and the device figure of merit 𝑍𝑇. For example, the maximum efficiency of the thermoelectric generator (device) can be expressed as 𝜂 = 𝑇ℎ𝑜𝑡 − 𝑇𝑐𝑜𝑙𝑑 𝑇ℎ𝑜𝑡 1 + 𝑍ത 𝑇 − 1 1 + 𝑍ത 𝑇 + Τ 𝑇𝑐𝑜𝑙𝑑 𝑇ℎ𝑜𝑡 where 𝜂 is the efficiency, 𝑇ℎ𝑜𝑡 and 𝑇𝑐𝑜𝑙𝑑 are the temperatures of the hot and cold junctions, respectively, ത 𝑇 is the average temperature between the cold and hot junctions. Here 𝑍 = 𝑧 only if temperature is assumed to be independent and thermoelectric properties of n- and p-type legs are matched, which is unrealistic approximation in majority of cases. For thermocouple consisting of n- and p-type legs: 𝑧ത 𝑇 = 𝛼𝑝−𝛼𝑛 2 ത 𝑇 𝜌𝑛𝜅𝑛+ 𝜌𝑝𝜅𝑝 2 while 𝑍ത 𝑇 = 𝑇ℎ𝑜𝑡−𝑇𝑐𝑜𝑙𝑑 1−𝜂 𝑇ℎ𝑜𝑡 1−𝜂 −𝑇ℎ𝑜𝑡 2 − 1 𝑧𝑇 ≠ 𝑍𝑇 G.J. Snyder, E.S. Toberer, Nat. Mater. 7 (2008) 105–114. G.J. Snyder, A.H. Snyder, Energy Environ. Sci. 10 (2017) 2280–2283.

Slide 4

Slide 4 text

Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 4 ZT calculator ZT calculator: http://thermoelectrics.matsci.northwestern.edu/thermoelectrics/ztcalc.html G.J. Snyder, A.H. Snyder, Energy Environ. Sci. 10 (2017) 2280–2283.

Slide 5

Slide 5 text

Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 5 TE module simulation from material’s properties https://tes.keri.re.kr/

Slide 6

Slide 6 text

Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 6 Strategies for the zT improvement 𝑧𝑇 = 𝛼2𝜎 𝜅 𝑇 = 𝛼2𝜎 𝜎𝐿𝑇 + 𝜅𝑙𝑎𝑡 𝑇 There are two most intuitive strategies that comes to mind when you see the formula for the figure of merit: (1) maximization of the power factor 𝛼2𝜎, (2) minimization of the lattice thermal conductivity 𝜅𝑙𝑎𝑡. However, all the transport properties 𝛼, 𝜎, and 𝜅 are strongly coupled and the main challenge is to tailor them in optimal way in order to develop thermoelectric material with superior performance. D.M. Rowe, CRC Handbook of Thermoelectrics: Macro to Nano, CRC Press, 2006.

Slide 7

Slide 7 text

H.J. Goldsmid, Sci. Technol. Adv. Mater. 22 (2021) 280–284. X. Zhang, et al., Sci. Adv. 6 (2020) eabc0726. A. Zevalkink, et al., Appl. Phys. Rev. 5 (2018) 021303. β Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 7 Quality factor So-called quality factor 𝐵 (or 𝛽) was firstly introduced in the late 50’s and it determines the maximum attainable 𝑧𝑇 for a given material into its most fundamental material properties, assuming optimized carrier concentration: 𝐵 ∝ 𝜇𝑤 𝜅𝑙𝑎𝑡 𝑇 Τ 5 2 here 𝜇𝑤 = 𝜇0 𝑚𝑑 ∗ 𝑚𝑒 Τ 3 2 is the weighted mobility, which is generally higher for multiband semiconductors. zTmax

Slide 8

Slide 8 text

H.J. Goldsmid, Sci. Technol. Adv. Mater. 22 (2021) 280–284. X. Zhang, et al., Sci. Adv. 6 (2020) eabc0726. A. Zevalkink, et al., Appl. Phys. Rev. 5 (2018) 021303. Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 8 Quality factor Many researchers using 𝐵 as a metric for search of promising thermoelectric because 𝐵 depends on temperature, but not doping, while giving an insight of the potential thermoelectric performance of material for a given chemical potential. It also gives a valuable understanding on what kind of materials can potentially be effective as thermoelectric performance. For example, in the framework of deformation potential 𝜏0 ∝ Τ 1 𝑚𝑏 ∗ Τ 3 2, 𝜇0 = Τ 𝑒𝜏0 𝑚𝐼 ∗, and 𝑚𝑑 ∗ = 𝑁𝑣 Τ 2 3𝑚𝑏 ∗ , thus, 𝐵 ∝ Τ 𝑁𝑣 𝑚𝐼 ∗𝜅𝑙 . In this context, the most promising thermoelectrics should be among multiband semiconductors with low inertial effective mass.

Slide 9

Slide 9 text

J.R. Drabble, H.J. Goldsmid, Thermal Conduction in Semiconductors, Pergamon Press, (1963). D.T. Morelli, G.A. Slack, in: S.L. Shindé, J.S. Goela (Eds.), High Therm. Conduct. Mater., Springer, New York, 2006, pp. 37–68. Fig. from X. Qian, J. Zhou, G. Chen, Nat. Mater. (2021) G.A. Slack, J. Phys. Chem. Solids 34 (1973) 321–335. Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 9 Lattice thermal conductivity Based on Leibfried and Schlömann model (lately corrected by Slack), the lattice thermal conductivity at high temperature 𝑇 > 𝜃𝐷 : 𝜅𝑙𝑎𝑡 = 𝐴 𝑘𝐵 𝜃𝐷 ℏ 3 ഥ 𝑀𝛿 𝛾2𝑁𝐴𝑣 𝑛 Τ 5 3𝑇 where 𝑁𝐴𝑣 is the Avogadro constant, 𝑛 is the number of atoms in the unit cell (molecule), 𝛿3 = 𝑉𝑎𝑡, 𝑉𝑎𝑡 is the average volume per atom, 𝐴 = 𝑓 𝛾 . Thus, several rules for low thermal conductivity can be formulated: (1) high mass of constituent atoms ( ഥ 𝑀𝛿𝜃𝐷 3 is maximized for light mass); (2) weak interatomic bonding; (3) complex crystal structure; (4) high anharmonicity. Conditions (1) and (2) means a low 𝜃𝐷, condition (3) means high 𝑛, and condition (4) means high 𝛾.

Slide 10

Slide 10 text

G. Slack in CRC Handbook of Thermoelectrics (ed. M. Rowe) p 407 – 440 (1995). Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 10 Phonon glass electron crystal In 1995 Glen A. Slack formulated the requirements for a thermoelectric materials in his concept of phonon glass electron crystal (PGEC) as follows: an effective thermoelectric material should conduct electricity effectively as a single crystal conductor and poorly conduct heat like glass. The most prominent representatives of this concept are skutterudites and clathrates. In such systems, the guest atom can “rattle” around the center in the cage. This rattling motion is expected to scatter the low-energy acoustic phonons and, thus, decrease the thermal conductivity to values typically seen in glass. The electrons, on the other hand, can flow through the network of the cage as in a crystalline metal. Crystal structure of RCoSb3 skutterudite (R is the rattling guest atom)

Slide 11

Slide 11 text

A.P. Novitskii, et al., Nanobiotechnology Reports 16 (2021) 294–307. Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 11 Summary What are we looking for? Doped (optimal 𝑛) multiband semiconductors (high 𝜇𝑤) with complex crystal structure mainly composed of heavy elements (low 𝜅𝑙𝑎𝑡). Along with that we also should remember that the following things are also important: • The abundance of the constituent elements • Chemical and thermal stability of material under working conditions • Complexity of the synthesis technique and its scalability • Ability to develop paired leg of another type of conductivity

Slide 12

Slide 12 text

W.G. Zeier, et al., Nat. Rev. Mater. 1 (2016) 1–10. Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 12 Approaches for improving zT Band convergence Carrier concentration optimization (Ioffe optimization) Seebeck coefficient increase Decrease of the thermal conductivity Quality factor optimization Increase of phonon scattering and lattice softening Complex crystal structures; heavy elements; high anharmonicity Materials that belong to phonon glass electron crystal (PGEC) concept Defect engineering Band structure engineering Compositing, texturation, modulation doping Resonant levels Spin-driven transport, magnetic doping, etc. 𝑧𝑇 = 𝛼2𝜎 𝜅 𝑇

Slide 13

Slide 13 text

H. Kim, et al., Phys. Status Solidi 254 (2017) 1600103. Y. Yu, et al., Mater. Today 32 (2020) 260–274. Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 13 Phonon scattering 𝜅𝑙𝑎𝑡 = 1 3 න 𝐶 𝜔 𝜐2 𝜔 𝜏𝑐 𝜔 𝑑𝜔 Debye model: • phonon velocity is constant • scattering channels are independent of each other 1 𝜏𝑐 𝑥 = ෍ 𝑖 1 𝜏𝑖 𝑥 𝜅𝑙𝑎𝑡 = 𝑘𝐵 2𝜋2𝜐𝑚 𝑘𝐵 𝑇 ℏ 3 ∙ න 0 Τ 𝜃𝐷 𝑇 𝜏𝑐 𝑥 𝑥4𝑒𝑥 𝑒𝑥 − 1 2 𝑑𝑥

Slide 14

Slide 14 text

R. Hanus, et al., Adv. Mater. 31 (2019) 1900108 T.J. Slade, et al., Joule 5 (2021) 1168–1182. Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 14 Lattice softening 𝜅𝑙𝑎𝑡 = 𝐴 𝜐𝑚 3 𝑇

Slide 15

Slide 15 text

A.F. Ioffe, Semiconductor Thermoelements, and Thermoelectric Cooling, Infosearch, London, 1957. H. Wang, et al., Adv. Funct. Mater. 23 (2013) 1586–1596. Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 15 Carrier concentration optimization This approach is based on the theory of solid solutions proposed by A.F. Ioffe in 1956. Introduction of substitutional atoms leads to a distortion of the crystal lattice and thus to an increase in scattering of both phonons and charge carriers. This results in a decrease of the charge carrier mobility and the lattice thermal conductivity. However, their decrease is disproportional; accordingly, at some point in the chemical composition, a situation can be reached where the drop in the lattice thermal conductivity is much more significant than the drop in the mobility. In other words, it can be stated that this method is devoted to the optimization of the quality factor 𝐵 ∝ Τ 𝜇𝑤 𝜅𝑙𝑎𝑡 (see Figure). (PbTe)1–x (PbSe)x 𝐵800𝐾 : 𝐵300𝐾 = 1: 4

Slide 16

Slide 16 text

Y. Zheng, et al., Chem. Soc. Rev. 50 (2021) 9022–9054. Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 16 Defect engineering

Slide 17

Slide 17 text

Y. Zheng, et al., Chem. Soc. Rev. 50 (2021) 9022–9054. D. Cheikh, et al., Joule 2 (2018) 698–709. Y. Liu, et al., J. Am. Chem. Soc. 133 (2011) 20112–20115. Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 17 Defect engineering. Point defects • Dopants (charge carrier optimization) • Vacancies • Interstitial atoms • Antisites • Weak bonded guest atoms (rattlers) 1e per formula unit in R3 Te4 when xVR is formed the number of electrons is reduced by (1–3x) n-type

Slide 18

Slide 18 text

Y. Zheng, et al., Chem. Soc. Rev. 50 (2021) 9022–9054. D. Cheikh, et al., Joule 2 (2018) 698–709. Y. Liu, et al., J. Am. Chem. Soc. 133 (2011) 20112–20115. Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 18 Defect engineering. Point defects • Dopants (charge carrier optimization) • Vacancies • Interstitial atoms • Antisites • Weak bonded guest atoms (rattlers) Stoichiometry control: vacancies at copper site leads to enhancement of the charge carriers concentration in BiCuSeO oxyselenides CuCu x → 𝑉Cu ′ + ℎ∙ p-type

Slide 19

Slide 19 text

S. Kim, et al., Science. 348 (2015) 109–114. Y. Sun, et al., J. Mater. Chem. C 9 (2021) 8506–8514. H.-S. Kim, et al., Mater. Horizons 3 (2016) 234–240. Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 19 Defect engineering. Dislocations

Slide 20

Slide 20 text

S. Kim, et al., Science. 348 (2015) 109–114. Y. Sun, et al., J. Mater. Chem. C 9 (2021) 8506–8514. H.-S. Kim, et al., Mater. Horizons 3 (2016) 234–240. Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 20 Defect engineering. Dislocations

Slide 21

Slide 21 text

M.G. Kanatzidis, Chem. Mater. 22 (2010) 648–659. J.F. Li, et al., NPG Asia Mater. 2 (2010) 152–158. Лекция «Введение в физику полупроводников» / 9 августа 2022 г. 21 Defect engineering. Nanostructuring 𝜅𝑙𝑎𝑡 = 𝑘𝐵 2𝜋2𝜐𝑚 𝑘𝐵 𝑇 ℏ 3 න 0 Τ 𝜃𝐷 𝑇 𝜏𝑐 𝑥 𝑥4𝑒𝑥 𝑒𝑥 − 1 2 𝑑𝑥 1 𝜏𝑐 𝑥 = 1 𝜏𝑔𝑏 𝑥 = 𝜐𝑚 𝐿𝐺 𝐵 ↑↑ 𝜇𝐻 ∝ 𝑒𝐿𝐺 8𝑚∗𝜋𝑘𝐵 𝑇− Τ 1 2𝑒− Τ Δ𝐸𝑏 𝑘𝐵𝑇

Slide 22

Slide 22 text

A.A. Usenko, et al., Scr. Mater. 96 (2015) 9–12. Лекция «Введение в физику полупроводников» / 10 августа 2022 г. 22 Defect engineering. Nanostructuring

Slide 23

Slide 23 text

J. Li, et al., ACS Appl. Mater. Interfaces 11 (2019) 20064–20072. Лекция «Введение в физику полупроводников» / 10 августа 2022 г. 23 Defect engineering. Nanostructuring

Slide 24

Slide 24 text

N. Wang, et al., npj Comput. Mater. 7 (2021) 18. Y. Pan, et al., Adv. Mater. 33 (2021) 2003168. A. Li, et al., Nat. Commun. 12 (2021) 5408. Лекция «Введение в физику полупроводников» / 10 августа 2022 г. 24 Band structure engineering

Slide 25

Slide 25 text

N. Wang, et al., npj Comput. Mater. 7 (2021) 18. Y. Pan, et al., Adv. Mater. 33 (2021) 2003168. A. Li, et al., Nat. Commun. 12 (2021) 5408. Лекция «Введение в физику полупроводников» / 10 августа 2022 г. 25 Band structure engineering

Slide 26

Slide 26 text

Y. Liu, et al, Appl. Phys. Lett. 106 (2015) 233903. Лекция «Введение в физику полупроводников» / 10 августа 2022 г. 26 Band structure engineering

Slide 27

Slide 27 text

Лекция «Введение в физику полупроводников» / 10 августа 2022 г. 27 Composites Filler type and properties: • Particles size • Particles shape • Uniform or anisotropic filling • Dimensionality • Conductivity type, including metal/semiconductor/insulator … Endless number of possible combinations and effects such as the effect of energy filtering of charge carriers, modulation doping, superparamagnetism, etc.

Slide 28

Slide 28 text

Лекция «Введение в физику полупроводников» / 10 августа 2022 г. 28 Energy filtering effect Z. Ma, et al., Nanoscale 12 (2020) 1904–1911.

Slide 29

Slide 29 text

Лекция «Введение в физику полупроводников» / 10 августа 2022 г. 29 Modulation doping Y.-L. Pei, et al., J. Am. Chem. Soc. 136 (2014) 13902–13908. BiCuSeO Bi1–x Bax CuSeO BiCuSeO + Bi1–x Bax CuSeO x = 0.25

Slide 30

Slide 30 text

Лекция «Введение в физику полупроводников» / 10 августа 2022 г. 30 Superparamagnetism W. Zhao, et al., Nature 549 (2017) 247–251.

Slide 31

Slide 31 text

Лекция «Введение в физику полупроводников» / 10 августа 2022 г. 31 Academic twitter

Slide 32

Slide 32 text

Лекция «Введение в физику полупроводников» / 10 августа 2022 г. 32 Academic Research Center for Energy Efficiency Our website: http://energy.misis.ru/home_eng Introduction to Thermoelectricity guide: https://tinyurl.com/ateguide @anovitzkij @energy_misis [email protected]

Slide 33

Slide 33 text

Thank you for your attention @anovitzkij @energy_misis [email protected]