Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
RCO論文輪読会(2016/05/27) “Collaborative topic modeling for recommending scientific articles”(KDD2011) Chong Wang, David M. Blei 高柳慎一
Slide 2
Slide 2 text
(C)Recruit Communications Co., Ltd. ABSTRACT 1
Slide 3
Slide 3 text
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 2
Slide 4
Slide 4 text
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 3
Slide 5
Slide 5 text
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 4
Slide 6
Slide 6 text
(C)Recruit Communications Co., Ltd. 2. BACKGROUND & 2.1 Recommendation Tasks 5
Slide 7
Slide 7 text
(C)Recruit Communications Co., Ltd. 2.1 Recommendation Tasks 6
Slide 8
Slide 8 text
(C)Recruit Communications Co., Ltd. 2.1 Recommendation Tasks 7
Slide 9
Slide 9 text
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 8
Slide 10
Slide 10 text
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 9
Slide 11
Slide 11 text
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 10
Slide 12
Slide 12 text
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 11
Slide 13
Slide 13 text
(C)Recruit Communications Co., Ltd. 2.3 Probabilistic Topic Models 12
Slide 14
Slide 14 text
(C)Recruit Communications Co., Ltd. LDAの生成過程 13
Slide 15
Slide 15 text
(C)Recruit Communications Co., Ltd. LDAの特徴 14
Slide 16
Slide 16 text
(C)Recruit Communications Co., Ltd. 3. COLLABORATIVE TOPIC REGRESSION 15
Slide 17
Slide 17 text
(C)Recruit Communications Co., Ltd. COLLABORATIVE TOPIC REGRESSION 16
Slide 18
Slide 18 text
(C)Recruit Communications Co., Ltd. CTRの生成過程 17
Slide 19
Slide 19 text
(C)Recruit Communications Co., Ltd. 3. COLLABORATIVE TOPIC REGRESSION 18
Slide 20
Slide 20 text
(C)Recruit Communications Co., Ltd. CTRのモデルのRegressionたる所以 19
Slide 21
Slide 21 text
(C)Recruit Communications Co., Ltd. 学習のさせ方 20
Slide 22
Slide 22 text
(C)Recruit Communications Co., Ltd. 学習のさせ方 21
Slide 23
Slide 23 text
(C)Recruit Communications Co., Ltd. 簡単な証明 by iPad手書き 22
Slide 24
Slide 24 text
(C)Recruit Communications Co., Ltd. 学習のさせ方 23
Slide 25
Slide 25 text
(C)Recruit Communications Co., Ltd. 予測 24
Slide 26
Slide 26 text
(C)Recruit Communications Co., Ltd. 4. EMPIRICAL STUDY 25
Slide 27
Slide 27 text
(C)Recruit Communications Co., Ltd. データの規模感 26
Slide 28
Slide 28 text
(C)Recruit Communications Co., Ltd. 評価 27
Slide 29
Slide 29 text
(C)Recruit Communications Co., Ltd. 結果 28
Slide 30
Slide 30 text
(C)Recruit Communications Co., Ltd. 結果 (ライブラリ内の論文数(Fig 5)・ある論文をLikeした数(Fig 6) 依存性) 29 数が増えると Recallが下がる (あまり有名な論文じゃ ないのを出すため) 数が増えると Recallが上がる (みんな見てる論文 だとCFがうまく動く)
Slide 31
Slide 31 text
(C)Recruit Communications Co., Ltd. 結果(ある2ユーザの好んだトピックを抽出) 30 トピックの潜 在ベクトルの 重みをランキ ングして抽出
Slide 32
Slide 32 text
(C)Recruit Communications Co., Ltd. 結果(オフセットの大きかった論文BEST 10) 31 ※内容よりもCFが効くケースに相当
Slide 33
Slide 33 text
(C)Recruit Communications Co., Ltd. 結果(EMの論文がベイズ統計勢にもよく参照されている例) 32 ※内容よりもCFが効く ケースに相当
Slide 34
Slide 34 text
(C)Recruit Communications Co., Ltd. 結果(逆にトピックが広がらない例) 33 ※内容が支配的なケー スに相当
Slide 35
Slide 35 text
(C)Recruit Communications Co., Ltd. 5. CONCLUSIONS AND FUTURE WORK 34