Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
ପԁۂઢͷ༗ཧͱBSD༧ ക࡚@unaoya ͢͏͕͘ͿΜ͔ɺཧۭؒ τ ´ oπoζ MATHPOWER2018 10/6
Slide 2
Slide 2 text
ฏํͱཱํ ฏํ 1, 4, 9, 16, 25, 36, 49, 64, . . . ཱํ 1, 8, 27, 64, 125, 216, 343, 512, . . . ฏํͱཱํͷ͕ࠩ1 ฏํͱཱํʹڬ·Εͨ།Ұͷ26
Slide 3
Slide 3 text
ପԁۂઢ y2 = x3 + 1, (x, y) = (2, 3) y2 = x3 − 2, (x, y) = (3, 5) ༗ཧ x, y ࠲ඪ͕༗ཧͳ
Slide 4
Slide 4 text
༗ཧͷ܈ P Q R P+Q P, Q ͕༗ཧ ઢPQ ༗ཧ R ༗ཧ P + Q ༗ཧ
Slide 5
Slide 5 text
༗ཧͷ܈ P Q 2P P ͕༗ཧ ઢ༗ཧ Q ༗ཧ 2P ༗ཧ
Slide 6
Slide 6 text
y2 = x3 + 1 P Q R P+Q P = (−1, 0), Q = (0, 1) PQ : y = x + 1 (x + 1)2 = x3 + 1 x = −1, 0, 2 R = (2, 3), P + Q = (2, −3)
Slide 7
Slide 7 text
y2 = x3 + 1 P Q 2P P = (2, 3) yy′ = 3x2 ઢ y = 2(x − 2) + 3 = 2x − 1 (2x − 1)2 = x3 + 1 x = 0, 2 Q = (0, −1), 2P = (0, 1)
Slide 8
Slide 8 text
y2 = x3 + 1 P Q R P + Q y2 = x3 + 1ͷ༗ཧ (−1, 0), (0, ±1), (2, ±3), O ͷ6ݸɻ
Slide 9
Slide 9 text
y2 = x3 − 2 P = (3, 5) 2P = (129/100, −383/1000) 3P = (164323/29241, −66234835/5000211) 4P = (2340922881/58675600, 113259286337279/44945509600) ༗ཧnP ͷΈ
Slide 10
Slide 10 text
y2 = x3 − 17x P = (−1, 4) 2P = (1089/16, −35871/64) 3P = (−4169764/1329409, 7264943878/1532808577) 4P = (1416749814529/82350633024, − 1637173839697065089/23631996457631232)
Slide 11
Slide 11 text
y2 = x3 − 17x Q = (−4, 2) 2Q = (81/16, 423/64) 3Q = (−36481/9409, −2520436/912673) 4Q = (119093569/11451456, − 1193164200991/38751727104)
Slide 12
Slide 12 text
y2 = x3 − 17x R = (0, 0) 2R = O ༗ཧnP + mQ, nP + mQ + R Ͱશͯɻ
Slide 13
Slide 13 text
ϞʔσϧϰΣΠϢ֊ ༗ཧͷʢແݶ෦ͷʣ࠷খͷੜݩͷݸ 1. y2 = x3 + 1ϞʔσϧϰΣΠϢ֊0 2. y2 = x3 − 2nP ͷܗͳͷͰϞʔσϧ ϰΣΠϢ֊1 3. y2 = x3 − 17x nP + mQ ͷܗͳͷͰ ϞʔσϧϰΣΠϢ֊2
Slide 14
Slide 14 text
mod pͷͷݸ ପԁۂઢE ͷ mod p ͷͷݸNp (E)Λ ͑Δɻ
Slide 15
Slide 15 text
E : y2 = x3 + 1 N3 (E) mod 3Ͱ (x, y) = (0, 0), (1, 0), (0, 1), (1, 1) 02 ̸= 03 + 1 02 = 13 + 1 12 = 03 + 1 12 ̸= 13 + 1
Slide 16
Slide 16 text
E : y2 = x3 + 1 N3 (E) mod 2Ͱx = 0, 1, 2, y = 0, 1, 2 12 = 03 + 1, 22 = 03 + 1, 02 = 23 + 1 ͷ3ͭʹແݶԕΛՃ͑ͯ N3 (E) = 4
Slide 17
Slide 17 text
E : y2 = x3 + 1 ∏ p Np (E) p Λߟ͑Δɻ N2 (E) 2 , N2 (E) 2 N3 (E) 3 , N2 (E) 2 N3 (E) 3 N5 (E) 5 , . . .
Slide 18
Slide 18 text
E : y2 = x3 + 1
Slide 19
Slide 19 text
E : y2 = x3 − 2
Slide 20
Slide 20 text
E : y2 = x3 − 17x
Slide 21
Slide 21 text
∏ Np(E)/p
Slide 22
Slide 22 text
Lؔ L(s, E) = ∏ p 1 1 − (1 + p − Np (E))p−s + p1−2s ϦʔϚϯθʔλؔͷପԁۂઢ൛ ζ(s) = ∏ p 1 1 − p−s
Slide 23
Slide 23 text
Lؔ L(1, E) = ∏ p 1 1 − (1 + p − Np (E))p−1 + p1−2 = ∏ p 1 1 − p−1 − 1 + Np (E)p−1 + p−1 = ∏ p 1 Np (E)/p
Slide 24
Slide 24 text
Birch and Swinnerton-Dyer༧ ▶ L(s, E)ͷs = 1Ͱͷॏෳͱ E ͷϞʔσϧϰΣΠϢ֊͕͍͠ ▶ L(1, E) ̸= 0 ⇐⇒ ༗ཧ͕༗ݶ ෦తղܾ͋Γɻ શʹղ͍ͨΒ100ສυϧ.ɻ
Slide 25
Slide 25 text
ࢀߟจݙ 1. ాޱ༤Ұ, ༗ཧͷ 2. Birch and Swinnerton-Dyer, Notes on elliptic curves. II.