Slide 1

Slide 1 text

Local Urban Area Electricity Demand Profile Modelling for Infrastructure Investment and Demand Response in New Zealand Ben Anderson [email protected] / [email protected] @dataknut Why, how and how far have we got?

Slide 2

Slide 2 text

@dataknut The menu § The problem • Local demand peaks § The solution • Local demand models § Initial results § Where have we got to? 2

Slide 3

Slide 3 text

@dataknut NZ: What’s the problem? 3 Total NZ electricity demand per half hour (June) Source: Electricity Authority GW (sum)

Slide 4

Slide 4 text

@dataknut Estimating the Technical Potential for Residential Demand Response in New Zealand Fig. 3 illustrates electricity generation by time of day on GWh per half-hour trading period. Times of peak electricity generation are characterised by a higher electricity supply and demand at certain times and occur in early morning and evening hours in winter 2017. The maximum power on an average day in winter 2017 was 6.2 GW (equi- valent to 3.1 GWh per half-hour) and 5 GW in summer. Times of electricity peaks change by season. In summer 2017, the evening peak was much flatter and occurred slightly earlier compared to winter of the same year. This change in the electricity supply pat- tern is caused by weather conditions in December that do not necessitate appliances such as electrical heating systems to be activated, coupled with daylight saving and also longer daylight hours for summer, a lower use of lighting technologies in the early even- ing. All figures and calculations in this report consider New Zealand daylight saving. Fig. 3| Daily average half-hour electricity generation profile in summer and winter 2017 Source: Based on (Electricity Authority, 2018c) Increased demand during time intervals of high electricity demand are largely supplied by hydro electricity generation. Hydro electricity generation as depicted in Fig. 4 rep- resents a significant part of New Zealand’s electricity supply and necessitates active Page 17 of 113 NZ: What’s the ‘peak’ problem? • ‘Dirty’ energy (?) Carbon problems: • Higher priced energy Cost problems: • Inefficient use of resources; • ‘Local’ overload; Infrastructure problems: 4 Filling the trough Peak load Depends on hydro levels in Feb – April Khan et al (2018) 10.1016/j.jclepro.2018.02.309

Slide 5

Slide 5 text

@dataknut Estimating the Technical Potential for Residential Demand Response in New Zealand Fig. 3 illustrates electricity generation by time of day on GWh per half-hour trading period. Times of peak electricity generation are characterised by a higher electricity supply and demand at certain times and occur in early morning and evening hours in winter 2017. The maximum power on an average day in winter 2017 was 6.2 GW (equi- valent to 3.1 GWh per half-hour) and 5 GW in summer. Times of electricity peaks change by season. In summer 2017, the evening peak was much flatter and occurred slightly earlier compared to winter of the same year. This change in the electricity supply pat- tern is caused by weather conditions in December that do not necessitate appliances such as electrical heating systems to be activated, coupled with daylight saving and also longer daylight hours for summer, a lower use of lighting technologies in the early even- ing. All figures and calculations in this report consider New Zealand daylight saving. Fig. 3| Daily average half-hour electricity generation profile in summer and winter 2017 Source: Based on (Electricity Authority, 2018c) Increased demand during time intervals of high electricity demand are largely supplied by hydro electricity generation. Hydro electricity generation as depicted in Fig. 4 rep- resents a significant part of New Zealand’s electricity supply and necessitates active Page 17 of 113 NZ: Why is ‘peak’ a problem? • ‘Dirty’ energy (?) Carbon problems: • Higher priced energy Cost problems: • PV & Wind Renewables mis-match • Inefficient use of resources; • ‘Local’ (LV network) overload; Infrastructure problems: 5 Filling the trough Peak load Depends on hydro levels in Feb – April Khan et al (2018) 10.1016/j.jclepro.2018.02.309

Slide 6

Slide 6 text

@dataknut Estimating the Technical Potential for Residential Demand Response in New Zealand Fig. 3 illustrates electricity generation by time of day on GWh per half-hour trading period. Times of peak electricity generation are characterised by a higher electricity supply and demand at certain times and occur in early morning and evening hours in winter 2017. The maximum power on an average day in winter 2017 was 6.2 GW (equi- valent to 3.1 GWh per half-hour) and 5 GW in summer. Times of electricity peaks change by season. In summer 2017, the evening peak was much flatter and occurred slightly earlier compared to winter of the same year. This change in the electricity supply pat- tern is caused by weather conditions in December that do not necessitate appliances such as electrical heating systems to be activated, coupled with daylight saving and also longer daylight hours for summer, a lower use of lighting technologies in the early even- ing. All figures and calculations in this report consider New Zealand daylight saving. Fig. 3| Daily average half-hour electricity generation profile in summer and winter 2017 Source: Based on (Electricity Authority, 2018c) Increased demand during time intervals of high electricity demand are largely supplied by hydro electricity generation. Hydro electricity generation as depicted in Fig. 4 rep- resents a significant part of New Zealand’s electricity supply and necessitates active Page 17 of 113 What makes up peak demand? What might be reduced? Who might respond? And what are the local network consequences? What to do? Storage •Just reducing it per se Demand Reduction •Shifting it somewhere else in time (or space and time) Demand Response 6

Slide 7

Slide 7 text

@dataknut Estimating the Technical Potential for Residential Demand Response in New Zealand Fig. 3 illustrates electricity generation by time of day on GWh per half-hour trading period. Times of peak electricity generation are characterised by a higher electricity supply and demand at certain times and occur in early morning and evening hours in winter 2017. The maximum power on an average day in winter 2017 was 6.2 GW (equi- valent to 3.1 GWh per half-hour) and 5 GW in summer. Times of electricity peaks change by season. In summer 2017, the evening peak was much flatter and occurred slightly earlier compared to winter of the same year. This change in the electricity supply pat- tern is caused by weather conditions in December that do not necessitate appliances such as electrical heating systems to be activated, coupled with daylight saving and also longer daylight hours for summer, a lower use of lighting technologies in the early even- ing. All figures and calculations in this report consider New Zealand daylight saving. Fig. 3| Daily average half-hour electricity generation profile in summer and winter 2017 Source: Based on (Electricity Authority, 2018c) Increased demand during time intervals of high electricity demand are largely supplied by hydro electricity generation. Hydro electricity generation as depicted in Fig. 4 rep- resents a significant part of New Zealand’s electricity supply and necessitates active Page 17 of 113 The local problem 7 Areas with more electric heating? Areas with larger households? Areas with more EVs? 1. Targeted interventions 2. Network investment decisions £££ Estimating the Technical Potential for Residential Demand Response in New Zealand Fig. 3 illustrates electricity generation by time of day on GWh per half-hour trading period. Times of peak electricity generation are characterised by a higher electricity supply and demand at certain times and occur in early morning and evening hours in winter 2017. The maximum power on an average day in winter 2017 was 6.2 GW (equi- valent to 3.1 GWh per half-hour) and 5 GW in summer. Times of electricity peaks change by season. In summer 2017, the evening peak was much flatter and occurred slightly earlier compared to winter of the same year. This change in the electricity supply pat- tern is caused by weather conditions in December that do not necessitate appliances such as electrical heating systems to be activated, coupled with daylight saving and also longer daylight hours for summer, a lower use of lighting technologies in the early even- ing. All figures and calculations in this report consider New Zealand daylight saving. Fig. 3| Daily average half-hour electricity generation profile in summer and winter 2017 Source: Based on (Electricity Authority, 2018c) Increased demand during time intervals of high electricity demand are largely supplied by hydro electricity generation. Hydro electricity generation as depicted in Fig. 4 rep- resents a significant part of New Zealand’s electricity supply and necessitates active Page 17 of 113 Estimating the Technical Potential for Residential Demand Response in New Zealand Fig. 3 illustrates electricity generation by time of day on GWh per half-hour trading period. Times of peak electricity generation are characterised by a higher electricity supply and demand at certain times and occur in early morning and evening hours in winter 2017. The maximum power on an average day in winter 2017 was 6.2 GW (equi- valent to 3.1 GWh per half-hour) and 5 GW in summer. Times of electricity peaks change by season. In summer 2017, the evening peak was much flatter and occurred slightly earlier compared to winter of the same year. This change in the electricity supply pat- tern is caused by weather conditions in December that do not necessitate appliances such as electrical heating systems to be activated, coupled with daylight saving and also longer daylight hours for summer, a lower use of lighting technologies in the early even- ing. All figures and calculations in this report consider New Zealand daylight saving. Fig. 3| Daily average half-hour electricity generation profile in summer and winter 2017 Source: Based on (Electricity Authority, 2018c) Increased demand during time intervals of high electricity demand are largely supplied by hydro electricity generation. Hydro electricity generation as depicted in Fig. 4 rep- resents a significant part of New Zealand’s electricity supply and necessitates active Page 17 of 113 Estimating the Technical Potential for Residential Demand Response in New Zealand Fig. 3 illustrates electricity generation by time of day on GWh per half-hour trading period. Times of peak electricity generation are characterised by a higher electricity supply and demand at certain times and occur in early morning and evening hours in winter 2017. The maximum power on an average day in winter 2017 was 6.2 GW (equi- valent to 3.1 GWh per half-hour) and 5 GW in summer. Times of electricity peaks change by season. In summer 2017, the evening peak was much flatter and occurred slightly earlier compared to winter of the same year. This change in the electricity supply pat- tern is caused by weather conditions in December that do not necessitate appliances such as electrical heating systems to be activated, coupled with daylight saving and also longer daylight hours for summer, a lower use of lighting technologies in the early even- ing. All figures and calculations in this report consider New Zealand daylight saving. Fig. 3| Daily average half-hour electricity generation profile in summer and winter 2017 Source: Based on (Electricity Authority, 2018c) Increased demand during time intervals of high electricity demand are largely supplied by hydro electricity generation. Hydro electricity generation as depicted in Fig. 4 rep- resents a significant part of New Zealand’s electricity supply and necessitates active Page 17 of 113 Estimating the Technical Potential for Residential Demand Response in New Zealand Fig. 3 illustrates electricity generation by time of day on GWh per half-hour trading period. Times of peak electricity generation are characterised by a higher electricity supply and demand at certain times and occur in early morning and evening hours in winter 2017. The maximum power on an average day in winter 2017 was 6.2 GW (equi- valent to 3.1 GWh per half-hour) and 5 GW in summer. Times of electricity peaks change by season. In summer 2017, the evening peak was much flatter and occurred slightly earlier compared to winter of the same year. This change in the electricity supply pat- tern is caused by weather conditions in December that do not necessitate appliances such as electrical heating systems to be activated, coupled with daylight saving and also longer daylight hours for summer, a lower use of lighting technologies in the early even- ing. All figures and calculations in this report consider New Zealand daylight saving. Fig. 3| Daily average half-hour electricity generation profile in summer and winter 2017 Source: Based on (Electricity Authority, 2018c) Increased demand during time intervals of high electricity demand are largely supplied by hydro electricity generation. Hydro electricity generation as depicted in Fig. 4 rep- resents a significant part of New Zealand’s electricity supply and necessitates active Page 17 of 113

Slide 8

Slide 8 text

@dataknut The menu § The problem • Local demand peaks § The solution • Local demand models § Initial results • Observation based § Where have we got to? 8 period. Times of peak electricity generation are characterised by a higher electricity supply and demand at certain times and occur in early morning and evening hours in winter 2017. The maximum power on an average day in winter 2017 was 6.2 GW (equi- valent to 3.1 GWh per half-hour) and 5 GW in summer. Times of electricity peaks change by season. In summer 2017, the evening peak was much flatter and occurred slightly earlier compared to winter of the same year. This change in the electricity supply pat- tern is caused by weather conditions in December that do not necessitate appliances such as electrical heating systems to be activated, coupled with daylight saving and also longer daylight hours for summer, a lower use of lighting technologies in the early even- ing. All figures and calculations in this report consider New Zealand daylight saving. Fig. 3| Daily average half-hour electricity generation profile in summer and winter 2017 Source: Based on (Electricity Authority, 2018c) Increased demand during time intervals of high electricity demand are largely supplied by hydro electricity generation. Hydro electricity generation as depicted in Fig. 4 rep- resents a significant part of New Zealand’s electricity supply and necessitates active Page 17 of 113

Slide 9

Slide 9 text

@dataknut Local demand models: Concept Synthetic Electricity Census Census data Household data (demand) 9 Source: http://datashine.org.uk • NZ examples: • Area Units • ~ 600 households • Meshblock areas • ~ 100 households period. Times of peak electricity generation are characterised by a higher electricity supply and demand at certain times and occur in early morning and evening hours in winter 2017. The maximum power on an average day in winter 2017 was 6.2 GW (equi- valent to 3.1 GWh per half-hour) and 5 GW in summer. Times of electricity peaks change by season. In summer 2017, the evening peak was much flatter and occurred slightly earlier compared to winter of the same year. This change in the electricity supply pat- tern is caused by weather conditions in December that do not necessitate appliances such as electrical heating systems to be activated, coupled with daylight saving and also longer daylight hours for summer, a lower use of lighting technologies in the early even- ing. All figures and calculations in this report consider New Zealand daylight saving. Fig. 3| Daily average half-hour electricity generation profile in summer and winter 2017 Source: Based on (Electricity Authority, 2018c) Increased demand during time intervals of high electricity demand are largely supplied by hydro electricity generation. Hydro electricity generation as depicted in Fig. 4 rep- resents a significant part of New Zealand’s electricity supply and necessitates active Page 17 of 113

Slide 10

Slide 10 text

@dataknut Local demand models: Data Synthetic Electricity Census Census data Household data (demand) 10 Source: http://datashine.org.uk Household attributes (area level) Bespoke kW monitoring? Household attributes Trials: kW demand response? Time Use Survey Data? (imputed kW) Smart meter kW?

Slide 11

Slide 11 text

@dataknut Conceptually… 11 AU 2 Survey households with ‘constraint’ variables + kW AU 1 Iterative Proportional Fitting Deming and Stephan 1940; Fienberg 1970; Wong 1992 Birkin & Clarke, 1989; Ballas et al, 1999 Ballas et al (2005) R package: ipfp Blocker (2016) Weights Census ‘constraint’ tables

Slide 12

Slide 12 text

@dataknut § NZ: Taranaki – Area Unit level (600 households) – Data: • Observed kWh • For err… 44 households Local demand models: Case study 12

Slide 13

Slide 13 text

@dataknut GREENGrid area unit model (v0.01a) 13 • Sample of ~ 30 monitored households • Hawke’s Bay & Taranaki Using NZ GREENGrid Data • ~ 600 households per AU • For Hawke’s Bay & Taranaki At NZ Area Unit level • IPF re-weighting of survey cases (Ballas et al, 2005) Spatial Microsimulation Method Estimating the Technical Potential for Residential Demand Response in New Zealand Fig. 3 illustrates electricity generation by time of day on GWh per half-hour trading period. Times of peak electricity generation are characterised by a higher electricity supply and demand at certain times and occur in early morning and evening hours in winter 2017. The maximum power on an average day in winter 2017 was 6.2 GW (equi- valent to 3.1 GWh per half-hour) and 5 GW in summer. Times of electricity peaks change by season. In summer 2017, the evening peak was much flatter and occurred slightly earlier compared to winter of the same year. This change in the electricity supply pat- tern is caused by weather conditions in December that do not necessitate appliances such as electrical heating systems to be activated, coupled with daylight saving and also longer daylight hours for summer, a lower use of lighting technologies in the early even- ing. All figures and calculations in this report consider New Zealand daylight saving. Fig. 3| Daily average half-hour electricity generation profile in summer and winter 2017 Source: Based on (Electricity Authority, 2018c) Increased demand during time intervals of high electricity demand are largely supplied by hydro electricity generation. Hydro electricity generation as depicted in Fig. 4 rep- resents a significant part of New Zealand’s electricity supply and necessitates active Page 17 of 113

Slide 14

Slide 14 text

@dataknut Data: NZ GREENGrid 14 Get the data: https://dx.doi.org/10.5255/UKDA-SN-853334 • Circuits measured: • Hot water • Lighting • Heat pumps • Kitchen • Bedrooms • etc • Data: • Household survey • Mean power (W) per minute

Slide 15

Slide 15 text

@dataknut § Area Unit level • Hawke’s Bay • Taranaki § Variables used: • N bedrooms • N people • Presence children § Potential future variables: • Main heating fuel • Dwelling type • Income band • Age of adults/children Data: NZ Census 15 Matches GREENGrid sample ~ 90,000 households Some are not in GREENGrid data Because they correlate with demand

Slide 16

Slide 16 text

@dataknut Remember how this works… 16 AU 2 Survey households with ‘constraint’ variables + kW AU 1 Iterative Proportional Fitting Deming and Stephan 1940; Fienberg 1970; Wong 1992 Birkin & Clarke, 1989; Ballas et al, 1999 Ballas et al (2005) R package: ipfp Blocker (2016) Weights Census ‘constraint’ tables

Slide 17

Slide 17 text

@dataknut But… 17 AU 2 Survey households with ‘constraint’ variables + kW AU 1 Iterative Proportional Fitting Deming and Stephan 1940; Fienberg 1970; Wong 1992 Birkin & Clarke, 1989; Ballas et al, 1999 Ballas et al (2005) R package: ipfp Blocker (2016) Weights Census ‘constraint’ tables

Slide 18

Slide 18 text

@dataknut The consequence… 18 Source: Author’s calculations using NZ GREENGrid data [https://dx.doi.org/10.5255/UKDA-SN-853334], weighted), NZ Census 2013 small area tables [http://archive.stats.govt.nz/Census/2013-census/data- tables/meshblock-dataset.aspx] We might get ‘odd’ results

Slide 19

Slide 19 text

@dataknut For example… 19 Source: Author’s calculations using NZ GREENGrid data [https://dx.doi.org/10.5255/UKDA-SN-853334], weighted), NZ Census 2013 small area tables [http://nzdotstat.stats.govt.nz/wbos/Index.aspx] Simulated household counts in categories NOT used as constraints work quite well (sometimes) Each dot = 1 unit area

Slide 20

Slide 20 text

@dataknut Example: Hot Water (25th May 2015) 20 Source: Author’s calculations using NZ GREENGrid data [https://dx.doi.org/10.5255/UKDA-SN-853334], unweighted) Real world heterogeneity As measured Households

Slide 21

Slide 21 text

@dataknut Example: Hot Water (25th May 2015) 21 Source: Author’s calculations using NZ GREENGrid data [https://dx.doi.org/10.5255/UKDA-SN-853334], unweighted] Small n… As measured (mean)

Slide 22

Slide 22 text

@dataknut Example: Hot Water (25th May 2015) 22 As modelled Source: Author’s calculations using NZ GREENGrid data [https://dx.doi.org/10.5255/UKDA-SN-853334], weighted), NZ Census 2013 small area tables [http://archive.stats.govt.nz/Census/2013-census/data- tables/meshblock-dataset.aspx] Area units Shiftable demand? Met by V2G?

Slide 23

Slide 23 text

@dataknut Example: Lighting (observed seasonal) 23 Get the data: https://dx.doi.org/10.5255/UKDA-SN-853334 We want to estimate these for each unit area! VERY small n…

Slide 24

Slide 24 text

@dataknut Example: Lighting (spatial, seasonal) 24 Source: Author’s calculations using NZ GREENGrid data [https://dx.doi.org/10.5255/UKDA-SN-853334], weighted), NZ Census 2013 small area tables [http://archive.stats.govt.nz/Census/2013-census/data- tables/meshblock-dataset.aspx] Where might LEDs reduce demand? As modelled Each line = 1 area unit Highest lighting Lowest lighting

Slide 25

Slide 25 text

@dataknut The menu § The problem • Local demand peaks § The solution • Local demand models § Initial results • Observation based § Where have we got to? 25 period. Times of peak electricity generation are characterised by a higher electricity supply and demand at certain times and occur in early morning and evening hours in winter 2017. The maximum power on an average day in winter 2017 was 6.2 GW (equi- valent to 3.1 GWh per half-hour) and 5 GW in summer. Times of electricity peaks change by season. In summer 2017, the evening peak was much flatter and occurred slightly earlier compared to winter of the same year. This change in the electricity supply pat- tern is caused by weather conditions in December that do not necessitate appliances such as electrical heating systems to be activated, coupled with daylight saving and also longer daylight hours for summer, a lower use of lighting technologies in the early even- ing. All figures and calculations in this report consider New Zealand daylight saving. Fig. 3| Daily average half-hour electricity generation profile in summer and winter 2017 Source: Based on (Electricity Authority, 2018c) Increased demand during time intervals of high electricity demand are largely supplied by hydro electricity generation. Hydro electricity generation as depicted in Fig. 4 rep- resents a significant part of New Zealand’s electricity supply and necessitates active Page 17 of 113

Slide 26

Slide 26 text

@dataknut § We have shown: – The method works… – But the GREENGrid data is insufficient – The results are probably garbage § We need to: – Gather better kW data – Represent uncertainty – Validate, validate, validate Where have we got to? 26 N * 100 Representative sample

Slide 27

Slide 27 text

@dataknut Questions? § @dataknut § www.energy.soton.ac.uk/tag/spatialec – 2 year EU Global Fellowship @Otago CfS – 2017-2019 27 pixabay.com