Slide 1

Slide 1 text

Fritz Lekschas SATORI Apr 15, 2016 !1 A System for Ontology-Guided Visual Exploration of Biomedical Data Repositories

Slide 2

Slide 2 text

Fritz Lekschas 
 “Seeing into one's true nature” Apr 15, 2016 !2

Slide 3

Slide 3 text

Fritz Lekschas GOAL A System for Ontology-guided Visual Exploration of Biomedical Data Repositories » Refinery » Biological Context » Search & Visualization
 » RNA-Seq, ChIP-Seq, … » Stem Cell Commons, … Apr 15, 2016 !3

Slide 4

Slide 4 text

Fritz Lekschas WHY? Apr 15, 2016 !4

Slide 5

Slide 5 text

Jules J. Berman, 2013 “BIG DATA” Volume—Larger studies Variety—More studies Velocity—Constantly changing data Apr 15, 2016 !5

Slide 6

Slide 6 text

Fritz Lekschas BIG DATA Opportunities • Test hypothesis without data generation • Enrich in-house generated data • Meta analysis • Large scale data mining Challenges ➢ Find relevant data Apr 15, 2016 !6

Slide 7

Slide 7 text

Fritz Lekschas USER ROLES Data Analyst Analysing raw data to test a specific hypothesis Data Curator Develop and maintain annotation strategies Apr 15, 2016 !7 Project Leader Propose ideas to address challenges and foresee trends

Slide 8

Slide 8 text

Fritz Lekschas WHAT? Apr 15, 2016 !8

Slide 9

Slide 9 text

Fritz Lekschas Apr 15, 2016 !9

Slide 10

Slide 10 text

Fritz Lekschas Apr 15, 2016 !10

Slide 11

Slide 11 text

Fritz Lekschas Apr 15, 2016 !11

Slide 12

Slide 12 text

Fritz Lekschas HOW? Apr 15, 2016 !12

Slide 13

Slide 13 text

Fritz Lekschas Apr 15, 2016 !13

Slide 14

Slide 14 text

Fritz Lekschas Apr 15, 2016 !14

Slide 15

Slide 15 text

Fritz Lekschas Apr 15, 2016 !15

Slide 16

Slide 16 text

Fritz Lekschas Apr 15, 2016 !16

Slide 17

Slide 17 text

Fritz Lekschas Apr 15, 2016 !17

Slide 18

Slide 18 text

Fritz Lekschas LIVE DEMO *All bugs have been introduced for the sake of entertainment only. Please do not report them. Apr 15, 2016 !18

Slide 19

Slide 19 text

Fritz Lekschas WRAP UP Apr 15, 2016 !19

Slide 20

Slide 20 text

Fritz Lekschas CONCLUSION • Ontology-guided visualizations enrich exploration: overview & higher-level terms • Users need initial training or guidance • Need unified query interface • Utility of ontologies crucially depend on the annotation quality Apr 15, 2016 !20

Slide 21

Slide 21 text

Fritz Lekschas FUTURE WORK • Evaluate generality of SATORI • Unified query interface • Invert order nodes in the graph • Unify concept of the graph with faceted browsing Apr 15, 2016 !21

Slide 22

Slide 22 text

Fritz Lekschas THANK YOU! http://satori.refinery-platform.org Apr 15, 2016 !22

Slide 23

Slide 23 text

Fritz Lekschas APPENDIX Apr 15, 2016 !23

Slide 24

Slide 24 text

Fritz Lekschas PRECISION & RECALL Apr 15, 2016 !24

Slide 25

Slide 25 text

Fritz Lekschas PRECISION & RECALL Data Set Organism Cell Type Disease Seq. Techno. 1 Human Hepatocyte Healthy RNA-Seq Mouse Hepatocyte Healthy RNA-Seq 2 Human Podocyte Healthy RNA-Seq Human Podocyte Congenital nephrotic syndrome RNA-Seq 3 Human Fibroblast Healthy Microarray C57BL/6 Fibroblast Healthy Microarray 4 Human Fibroblast Cardiac fibrosis Microarray 5 Human Fibroblast Healthy RNA-Seq Charact. Value Precision Recall Charact. Value Precision Recall Organism Human 2 / 2 2 / 5 Disease Healthy 2 / 2 2 / 5 Mouse 1 / 2 1 / 2 Cardiac Fibrosis 1 / 2 1 / 1 Cell Type Fibroblast 2 / 2 2 / 3 Seq. Techno. Microarray 2 / 2 2 / 2 Apr 15, 2016 !25 Search: “Human Fibroblast Microarray”

Slide 26

Slide 26 text

Fritz Lekschas PRECISION & RECALL Apr 15, 2016 !26

Slide 27

Slide 27 text

Fritz Lekschas SATORI Semantic Annotation Tool and Ontological Relations Interface Apr 15, 2016 !27

Slide 28

Slide 28 text

Fritz Lekschas 
 “Enlightenment, Awakening, Comprehension & Understanding” Apr 15, 2016 !28