Fritz Lekschas
SATORI
Apr 15, 2016 !1
A System for Ontology-Guided Visual
Exploration of Biomedical Data Repositories
Slide 2
Slide 2 text
Fritz Lekschas
“Seeing into one's true nature”
Apr 15, 2016 !2
Slide 3
Slide 3 text
Fritz Lekschas
GOAL
A System for
Ontology-guided
Visual Exploration of
Biomedical Data
Repositories
» Refinery
» Biological Context
» Search & Visualization
» RNA-Seq, ChIP-Seq, …
» Stem Cell Commons, …
Apr 15, 2016 !3
Slide 4
Slide 4 text
Fritz Lekschas
WHY?
Apr 15, 2016 !4
Slide 5
Slide 5 text
Jules J. Berman, 2013
“BIG DATA”
Volume—Larger studies
Variety—More studies
Velocity—Constantly changing data
Apr 15, 2016 !5
Slide 6
Slide 6 text
Fritz Lekschas
BIG DATA
Opportunities
• Test hypothesis without data
generation
• Enrich in-house generated
data
• Meta analysis
• Large scale data mining
Challenges
➢ Find relevant data
Apr 15, 2016 !6
Slide 7
Slide 7 text
Fritz Lekschas
USER ROLES
Data Analyst
Analysing raw data
to test a specific
hypothesis
Data Curator
Develop and
maintain annotation
strategies
Apr 15, 2016 !7
Project Leader
Propose ideas to
address challenges
and foresee trends
Slide 8
Slide 8 text
Fritz Lekschas
WHAT?
Apr 15, 2016 !8
Slide 9
Slide 9 text
Fritz Lekschas
Apr 15, 2016 !9
Slide 10
Slide 10 text
Fritz Lekschas
Apr 15, 2016 !10
Slide 11
Slide 11 text
Fritz Lekschas
Apr 15, 2016 !11
Slide 12
Slide 12 text
Fritz Lekschas
HOW?
Apr 15, 2016 !12
Slide 13
Slide 13 text
Fritz Lekschas
Apr 15, 2016 !13
Slide 14
Slide 14 text
Fritz Lekschas
Apr 15, 2016 !14
Slide 15
Slide 15 text
Fritz Lekschas
Apr 15, 2016 !15
Slide 16
Slide 16 text
Fritz Lekschas
Apr 15, 2016 !16
Slide 17
Slide 17 text
Fritz Lekschas
Apr 15, 2016 !17
Slide 18
Slide 18 text
Fritz Lekschas
LIVE DEMO
*All bugs have been introduced for the sake of
entertainment only. Please do not report them.
Apr 15, 2016 !18
Slide 19
Slide 19 text
Fritz Lekschas
WRAP UP
Apr 15, 2016 !19
Slide 20
Slide 20 text
Fritz Lekschas
CONCLUSION
• Ontology-guided visualizations enrich
exploration: overview & higher-level terms
• Users need initial training or guidance
• Need unified query interface
• Utility of ontologies crucially depend on the
annotation quality
Apr 15, 2016 !20
Slide 21
Slide 21 text
Fritz Lekschas
FUTURE WORK
• Evaluate generality of SATORI
• Unified query interface
• Invert order nodes in the graph
• Unify concept of the graph with faceted
browsing
Apr 15, 2016 !21
Slide 22
Slide 22 text
Fritz Lekschas
THANK YOU!
http://satori.refinery-platform.org
Apr 15, 2016 !22
Slide 23
Slide 23 text
Fritz Lekschas
APPENDIX
Apr 15, 2016 !23
Slide 24
Slide 24 text
Fritz Lekschas
PRECISION & RECALL
Apr 15, 2016 !24
Slide 25
Slide 25 text
Fritz Lekschas
PRECISION & RECALL
Data Set Organism Cell Type Disease Seq. Techno.
1 Human Hepatocyte Healthy RNA-Seq
Mouse Hepatocyte Healthy RNA-Seq
2 Human Podocyte Healthy RNA-Seq
Human Podocyte Congenital nephrotic syndrome RNA-Seq
3 Human Fibroblast Healthy Microarray
C57BL/6 Fibroblast Healthy Microarray
4 Human Fibroblast Cardiac fibrosis Microarray
5 Human Fibroblast Healthy RNA-Seq
Charact. Value Precision Recall Charact. Value Precision Recall
Organism Human 2 / 2 2 / 5 Disease Healthy 2 / 2 2 / 5
Mouse 1 / 2 1 / 2 Cardiac
Fibrosis
1 / 2 1 / 1
Cell Type Fibroblast 2 / 2 2 / 3 Seq. Techno. Microarray 2 / 2 2 / 2
Apr 15, 2016 !25
Search: “Human Fibroblast Microarray”
Slide 26
Slide 26 text
Fritz Lekschas
PRECISION & RECALL
Apr 15, 2016 !26
Slide 27
Slide 27 text
Fritz Lekschas
SATORI
Semantic Annotation Tool and
Ontological Relations Interface
Apr 15, 2016 !27