5
ϑΣΠΫχϡʔεͷ൙ཞ
എܠ
બڍલϲ݄Ͱສճɺީิऀਓ τϥϯϓࢯ
ΫϦϯτϯࢯ
ͷϑΣΠΫχϡʔε͕'BDFCPPLͰ֦ࢄ
Allcott, Hunt, and Matthew Gentzkow. "Social media and fake news in the 2016 election." Journal of economic perspectives 31.2 (2017): 211-36.
13
l ຊͰϛυϧϝσΟΞͷଘࡏ͕ιʔγϟϧϝσΟΞͰͷϑΣΠ
Ϋχϡʔε֦ࢄͷҰΛ୲͍ͬͯΔͱ͍͏ࢦఠ
https://www.soumu.go.jp/main_content/000749423.pdf
ιʔγϟϧϝσΟΞͱϑΣΠΫχϡʔε
Slide 13
Slide 13 text
14
ϑΣΠΫχϡʔεͷ֦ࢄͨ͘͘͞ΜΘΔ
ιʔγϟϧϝσΟΞͱϑΣΠΫχϡʔε
Vosoughi, Soroush, Deb Roy, and Sinan Aral. "The spread of true and
false news online." science 359.6380 (2018): 1146-1151.
https://www.soumu.go.jp/main_content/000630427.pdf
l ಛʹ࣏ɺϏδωεɺઓ
૪ɺՊֶͳͲͷͰ֦
ࢄ͞Ε͍͢
l #PUͷޮՌҙ֎ͱখ͍͞
Slide 14
Slide 14 text
15
ϑΣΠΫχϡʔεΛ֦ࢄ͢ΔϢʔβͱʁ
ιʔγϟϧϝσΟΞͱϑΣΠΫχϡʔε
Yamaguchi, Shinichi, and Tsukasa Tanihara. "Relationship between misinformation
spreading behaviour and true/false judgments and literacy: an empirical analysis of
COVID-19 vaccine and political misinformation in Japan." Global Knowledge,
Memory and Communication (2023).
વ͕ͩɺͦͷχϡʔεΛʮਖ਼͍͠ʯͱ
৴ͨ͡ΓϝσΟΞɾϦςϥγʔ͕͍ਓ
͕֦ࢄ͠қ͍
ϑΣΠΫχϡʔεͷڞ༗ͷͷ
ϢʔβʹΑΔͷͰɺߴྸऀӈدΓͷ
࣏ࢥͷϢʔβ͕ڞ༗͍͢͠
Grinberg, Nir, et al. "Fake news on Twitter during the 2016 US presidential election."
Science 363.6425 (2019): 374-378.
Slide 15
Slide 15 text
16
ϑΣΠΫχϡʔεΛݕग़͢ΔࢼΈ
ιʔγϟϧϝσΟΞͱϑΣΠΫχϡʔε
l ͲͷΑ͏ͳಛΛ༻͍Δͷ͔ʁ
l ༻͍ͨಛΛ্ख͘׆༻Ͱ͖Δ͔ػցֶशϞσϧΛͲͷΑ͏ʹ
ߏங͢Δͷ͔ʁ
l ͲͷΑ͏ͳՃՁΛՃ͑Δͷ͔ʁʢ৴པੑͳͲʣ
機械学習モデル
フェイクニュースの
可能性のある投稿に
関する情報 (特徴量)
⼊⼒ 出⼒
Fake
or
True
Slide 16
Slide 16 text
17
ϑΣΠΫχϡʔεΛݕग़Ϟσϧͷྫ
ιʔγϟϧϝσΟΞͱϑΣΠΫχϡʔε
l ςΩετใڞ༗ͨ͠Ϣʔ
βͷಛΛ༻͍ͯɺϑΣΠΫ
χϡʔε͔Ͳ͏͔Λఆ
l ఆʹͨ͠ՕॴΛՄࢹԽ
ʢઆ໌ੑͷ༩ʣ
Lu, Yi-Ju, and Cheng-Te Li. "GCAN: Graph-aware Co-Attention Networks for
Explainable Fake News Detection on Social Media." Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. 2020.
Slide 17
Slide 17 text
18
ϑΣΠΫχϡʔεΛݕग़Ϟσϧͷ՝
ιʔγϟϧϝσΟΞͱϑΣΠΫχϡʔε
l ͷσʔλͰߏஙͨ͠ϑΣΠΫχϡʔεݕग़Ϟσϧ͕
ͷσʔλʹରԠͰ͖Δͷ͔ʁ EJBDISPOJDCJBTͷଘࡏ
l ϞσϧΛຖߋ৽͠ଓ͚Δͱ͍͏ͷେม
l ߏங͞ΕΔػցֶशϞσϧͷஅਖ਼͍͠Θ͚Ͱͳ͍
l ਖ਼͍͠ใΛϑΣΠΫͱࢦఠ͢Δةݥੑʹ͍ͭͯ ِཅੑِӄੑ
l ػցֶशϞσϧͷϒϥοΫϘοΫε
l அͷࠜڌΈ͕Θ͔Βͳ͍ͱਓؒͦͷϞσϧΛ৴͖͡Εͳ͍
l େྔʹଘࡏ͢ΔߘΛͲͷΑ͏ʹࡹ͔͘
Slide 18
Slide 18 text
19
(VBSEJBOͷ׆༻
ιʔγϟϧϝσΟΞͱϑΣΠΫχϡʔε
l (VBSEJBOϑΣΠΫχϡʔεΛࢦఠ͢Δ
Ϣʔβ
l (VBSEJBOΛࣗಈతʹൃݟɺੜ͢Δ͜
ͱͰϑΝΫτνΣοΫίετͷݮ
l గਖ਼Ϣʔβ͕ެࣜΞΧϯτͳͲͰ͋Δ
ͱޡใͷࢦఠΛ৴͡ΔՄೳੑ͕Ξοϓ
Hannak, Aniko, et al. "Get back! you don’t know me like that: The social mediation of fact checking interventions in
twitter conversations." Eighth International AAAI Conference on Weblogs and Social Media. 2014.
Vo, Nguyen, and Kyumin Lee. "Learning from fact-checkers: analysis and generation of fact-checking language."
Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.
2019.
Seo, Haeseung, et al. "If You Have a Reliable Source, Say Something: Effects of Correction Comments on COVID-19
Misinformation." Proceedings of the International AAAI Conference on Web and Social Media. Vol. 16. 2022.
28
ਓʑͷ࣋ͭೝόΠΞε
ͳͥਓʑϑΣΠΫχϡʔεΛ৴ͯ͡͠·͏ͷ͔ʁ
l ଟ͘ͷਓʑܦݧײ͔
ΒޡͬͨஅΛͯ͠͠·͏
l ͜ΕΒͷόΠΞε͕ਓʑΛ
ϑΣΠΫχϡʔεΛ৴͡͞
ͤΔޮՌΛͨΒ͢ҰํͰ
ɺϑΣΠΫχϡʔεରࡦʹ
͑ΔՄೳੑൿΊ͍ͯΔ
https://en.wikipedia.org/wiki/Cognitive_bias
Slide 28
Slide 28 text
29
όοΫϑΝΠΞʔޮՌ
ͳͥਓʑϑΣΠΫχϡʔεΛ৴ͯ͡͠·͏ͷ͔ʁ
l ݸਓͷ৴೦ʹ߹Θͳ͍గਖ਼Λ༩͑ΒΕͨ
ͱͯ͠ɺͦͷగਖ਼Λ৴ͣ͡ɺ͔͑ͬͯ
గਖ਼ʹΑͬͯݸਓͷ৴೦ΛڧΊΔޮՌ
l όοΫϑΝΠΞޮՌΛࣔ͢Ϣʔβɺෆ
ฏෆຬεϥϯάతͳදݱΛ༻͍Δ͜ͱ
͕ଟ͍
Nyhan, Brendan, and Jason Reifler. "When corrections fail: The persistence of political misperceptions."
Political Behavior 32.2 (2010): 303-330.
Jiang, Shan, and Christo Wilson. "Linguistic signals under misinformation and fact-checking: Evidence from
user comments on social media." Proceedings of the ACM on Human-Computer Interaction 2.CSCW (2018):
1-23.
Slide 29
Slide 29 text
30
"WBJMBCJMJUZ)FVSJTUJD
ʢར༻ՄೳੑώϡʔϦεςΟοΫʣ
ͳͥਓʑϑΣΠΫχϡʔεΛ৴ͯ͡͠·͏ͷ͔ʁ
l ࠷ۙʹͨ͠ใසൟʹ৮͢Δใ
͕அʹӨڹΛ༩͑Δ͜ͱ
l ϝσΟΞ4/4Ͱසൟʹʹ͢ΔϑΣΠ
Ϋχϡʔεɺޡͬͨใ͕ࣄ࣮ͱͯ͠
ೝࣝ͞Ε͍͢
Pennycook, Gordon, et al. "Shifting attention to accuracy can reduce misinformation online." Nature 592.7855
(2021): 590-595.
Slide 30
Slide 30 text
31
ΫΠζΛ׆༻ͨ͠ϑΣΠΫχϡʔεͷରࡦ
ͳͥਓʑϑΣΠΫχϡʔεΛ৴ͯ͡͠·͏ͷ͔ʁ
l ϑΣΠΫχϡʔεΛݟ͔ͯΒగਖ਼͢ΔͷͰ
ͳ͘ɺʮڭҭʯͱͯ͠ϑΣΠΫχϡʔε
ʹର͢ΔϫΫνϯΛछ
l ΫΠζܗࣜͰֶͿ͜ͱͰɺϑΣΠΫχϡʔ
εʹରͯ͠ὃ͞Εʹ͘͘ͳΔޮՌΛൃش
Roozenbeek, Jon, and Sander van der Linden. "Breaking Harmony Square: A game that “inoculates” against
political misinformation." The Harvard Kennedy School Misinformation Review (2020).
Slide 31
Slide 31 text
32
ಈըΛ׆༻ͨ͠ϑΣΠΫχϡʔεͷରࡦ
ͳͥਓʑϑΣΠΫχϡʔεΛ৴ͯ͡͠·͏ͷ͔ʁ
l ಈըʹΑΔϑΣΠΫχϡʔεରࡦ
l ϑΣΠΫχϡʔεʹରͯ͠ڧ͘ͳΔʮ৺
ཧత༧छʯͷޮՌݟΒΕ͕ͨɺΫ
Πζ΄Ͳͷେ͖͞Ͱͳ͍
l ҰํͰɺίετ͕҆͘ɺଟ͘ͷਓʑʹ
ʮडಈతʯʹछ͕Մೳ
Roozenbeek, Jon, et al. "Psychological inoculation improves resilience against misinformation on social
media." Science advances 8.34 (2022): eabo6254.
Slide 32
Slide 32 text
33
φοδΛ׆༻ͨ͠ϑΣΠΫχϡʔεͷରࡦ
ͳͥਓʑϑΣΠΫχϡʔεΛ৴ͯ͡͠·͏ͷ͔ʁ
l χϡʔεΛݟΔલʹ5SVF'BLFϥϕϧΛఏ
ࣔ͢Δ͖͔ʁݟͨޙʹఏࣔ͢Δ͖͔ɺ
ʹ͍ͭͯͲͷλΠϛϯάͰఏࣔ͢Δ͔Ͱ
ਓʑͷϑΣΠΫχϡʔεʹର͢Δೝ͕ม
Խ͢Δ͔Λݕূ
l ݟग़͠ΛಡΜͩޙʹగਖ਼͢Δ͜ͱ͕Ұ൪ޮ
Ռ͕ߴ͍͜ͱΛࣔ͢
Brashier, Nadia M., et al. "Timing matters when correcting fake news." Proceedings of the National Academy
of Sciences 118.5 (2021): e2020043118.
36
ੜ"*ʹΑΔ%FFQGBLFͷ࡞
ੜ"*ͱϑΣΠΫχϡʔε
from: https://gulfbusiness.com/deepfakes-novel-trend-or-novel-threat/
l %FFQGBLF%FFQ-FBSOJOHͱ
GBLFΛΈ߹Θ͋Θͤͨޠ
l Πϯλʔωοτ্Ͱ؍͞Εͨ
%FFQGBLFͷ૿Ճ
Slide 36
Slide 36 text
37
'BLF/FXT(FOFSBUJPO
ੜ"*ͱϑΣΠΫχϡʔε
Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.
(15ʹΑΔχϡʔεੜ
Slide 37
Slide 37 text
38
'BLF/FXT(FOFSBUJPO
ੜ"*ͱϑΣΠΫχϡʔε
https://news.yahoo.co.jp/expert/articles/846ed869620be2126f3cb749df6139d7282eb975
l ҰͰݟ͚͕͔ͭͳ͍ը૾
ੜʹΑΔσϚ
ྫɿz4IJ[VPLBEJTBTUFSGMPPEz
IUUQTTUBCMFEJGGVTJPO
XFCDPNQMBZHSPVOE
Slide 38
Slide 38 text
39
ੜ"*ͷ࣏ใͷ׆༻
l ࣏ɾࣾձʹؔ͢Δใ
Λ࡞͢ΔͨΊʹɺը૾ɾς
ΩετͷੜϞσϧΛͷࠃ
Ͱར༻͞Ε͍ͯΔ͜ͱΛใࠂ
House, Freedom. The repressive power of artificial intelligence. Technical Report.{Freedom House}.
https://freedomhouse. org/report/freedom-net/2023/repressive-power-artificial-intelligence, 2023.
ੜ"*ͱϑΣΠΫχϡʔε
Slide 39
Slide 39 text
40
ੜ"*ʹΑΔ࡞͞Εͨχϡʔεͷઆಘྗ
l (15ਓؒΑΓઆಘྗͷ͋ΔِใΛ࡞Γग़͢
l ਓؒʹχϡʔε͕ੜ"*ʹΑΔͷ͔Ͳ͏͔அ
Ͱ͖ͳ͍
Spitale, Giovanni, Nikola Biller-Andorno, and Federico Germani. "AI model GPT-3 (dis) informs us better than humans." Science Advances 9.26
(2023): eadh1850.
ੜ"*ͱϑΣΠΫχϡʔε
Slide 40
Slide 40 text
41
ϑΣΠΫχϡʔεݕग़ʹ--.͕͑Δ͔ʁ
Li, Guanghua, et al. "Re-Search for The Truth: Multi-round
Retrieval-augmented Large Language Models are Strong Fake
News Detectors." arXiv preprint arXiv:2403.09747 (2024).
ੜ"*ͱϑΣΠΫχϡʔε
l --.ͱݕࡧΛΈ߹ΘͤΔ͜ͱͰχϡʔε͕'BLF͔Ͳ͏͔Λఆ
Slide 41
Slide 41 text
42
%FFQGBLFݕग़ٕज़ͷൃల
Reiss, Tal, Bar Cavia, and Yedid Hoshen. "Detecting deepfakes without seeing any." arXiv preprint arXiv:2311.01458 (2023).
ੜ"*ͱϑΣΠΫχϡʔε
https://www.i.u-tokyo.ac.jp/news/press/2022/202204262039.shtml
Slide 42
Slide 42 text
43
ੜ"*࣌ͷϑΣΠΫχϡʔε
ੜ"*ͱϑΣΠΫχϡʔε
l ϑΣΠΫχϡʔεͷߴԽɾେྔԽ
l ΠϯϑΥΧϦϓεͷ౸དྷʢʁʣ
l ϩγΞɾΫϥΠφઓ૪͕ࣔ͢Α͏ʹɺใઓ͕ॏཁͳཱͪҐஔͱ
ͳΔ
l ϓϥοτϑΥʔϜࣄۀऀͷׂ͕ॏཁͱͳΔ
45
ΤίʔνΣϯόʔݱ
l 4/4্ͰɺࣗͱࣅͨΑ͏ͳՁ؍
ߟ͑ํͷϢʔβʔΛϑΥϩʔ͢Δ͜ͱ
Ͱɺಉ͡Α͏ͳχϡʔεใ͔Γ
͕ྲྀ௨͢Δดͨ͡ใڥ
l ۃԽϑΣΠΫχϡʔεຮԆͷԹচ
4/4ΛऔΓר͘ڥ
Slide 45
Slide 45 text
46
݄ͷΞϝϦΧͷ4/4ۭؒ
4/4ΛऔΓר͘ڥ
Nikolov, Dimitar, Alessandro Flammini, and Filippo Menczer. "Right and left, partisanship predicts (asymmetric) vulnerability to
misinformation." arXiv preprint arXiv:2010.01462 (2020).
Slide 46
Slide 46 text
47
ϑΟϧλʔόϒϧ
l ϢʔβͷݸਓใΛֶशͨ͠ΞϧΰϦζϜʹΑͬͯɺͦͷਓʹͱͬ
ͯڵຯؔ৺͕͋Γͦ͏ͳใ͔Γ͕ͬͯ͘Δใڥ
l (PPHMFݕࡧ4/4ͳͲ΄ͱΜͲͷαʔϏεʹඋ͑ΒΕ͍ͯΔਪન
γεςϜͷӨڹʢύʔιφϥΠθʔγϣϯٕज़ͷෛͷଆ໘ʣ
4/4ΛऔΓר͘ڥ
https://www.soumu.go.jp/main_content/000630427.pdf
Slide 47
Slide 47 text
48
ΞςϯγϣϯɾΤίϊϛʔ
l ϓϥοτϑΥʔϜͷ಄ʹΑ
ΓΞςϯγϣϯࢢͷ಄
l ਓʑͷ࣌ؒΛୣ͍औΔڝ૪ۭ
ؒͷܗ
l “Most people are unaware of
how they spend their time and
attention, their most crucial
resources.”
4/4ΛऔΓר͘ڥ
https://www.marketingmag.com.au/tech-data/why-attention-is-the-worlds-most-valuable-
resource/
Slide 48
Slide 48 text
49
ΞςϯγϣϯɾΤίϊϛʔ
l ΞςϯγϣϯࢢͰʮࢥͷڝ૪ʯ͔Βʮܹͷڝ૪ʯ
l ϑΣΠΫχϡʔε͕૿͑Δཧ༝ͷͭ
l 5SPMMͷ૿ՃͷཁҼʹ
l "*ͷਓʑͷ࠷దͳ"UUFOUJPO֫ಘํ๏Λ༧ଌ͢Δ
l 5JL5PLͷॎεΫϩʔϧʹΑΔਪન
l γεςϜʹΑͬͯਓʑͷڧ੍తͳʮࣹʯΛҾ͖ى͜͢͜ͱ͔Βɺ
ʮनΘΕͷऩʢDBQUJWFBVEJFODFʣʯͱදݱ
l ຊͰిंͷԻࠂ͕ਓ֨ݖʹ͋ͨΔ͔Ͱ͕ٞՃͨ͜͠ͱ
4/4ΛऔΓר͘ڥ
51
ࠓޙͷσδλϧڥ
l ϓϥοτϑΥʔϜͷׂ͕·͢·͢ॏཁʹͳ͍ͬͯ͘
l Ͳ͜·Ͱن੍͠ɺͲ͜·Ͱදݱͷࣗ༝Λҡ࣋͢Δڥͱ͢Δͷ͔ʁ
l ֎ࢿܥͷϓϥοτϑΥʔϜࣄۀऀ͕ଟ͍தͰɺϢʔβʹຊޠͰରԠͰ͖
Δମ੍Λ͑Δ͔ʁ
l %FFQ'BLFɺϝλόʔεͳͲͷٕज़ͷֵ৽ʹ͍ɺੜ͡Δࣾձͷ
ෳࡶԽ
l ใϦςϥγʔڭҭͷ֦ॆ
͕ٸ
σδλϧڥͷະདྷ
Slide 51
Slide 51 text
52
ࠓޙͷσδλϧڥ
l ϑΝΫτνΣοΫίϛϡχςΟϊʔτͳͲͷऔΓΈͷ֦ॆͷ
ඞཁੑ
l ຊͰϑΝΫτνΣοΫػ͕ؔগͳ͍ʢϑΝΫτνΣοΫͷଟ༷ੑ͕อ
ͨΕͳ͍ʣ
l ϚεϝσΟΞ͕ͦͷׂΛ
୲͏͜ͱ͕ظ͞Ε͍ͯΔ
σδλϧڥͷະདྷ
⼭⼝ほか(2022)「Innovation Nippon 2021 わが国における偽・誤情報の実
態の把握と 社会的対処の検討」
https://www.glocom.ac.jp/activities/project/7759
Slide 52
Slide 52 text
53
ࠓޙͷσδλϧڥ
੍ɺγεςϜʢφοδʣɺϦςϥγʔͷͭΛಉ࣌ʹ
ڧ͍ͯ͘͘͜͠ͱ͕ॏཁ
l ຊωοτڥσδλϧίϯςϯπʹର͢Δ๏੍͕Վత
l ϦςϥγʔڭҭɺϓϨόϯΩϯάͷऔΓΈΛૣΊʹऔΓΜͰ͍͘͜ͱ͕ॏ
ཁ
σδλϧڥͷະདྷ