Slide 19
Slide 19 text
Jupyter Notebook
# Load libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.svm import SVC
from joblib import dump, load
# Load dataset
df = pd.read_csv("data/iris.csv")
# Extract features (X) and labels (y)
X = df[["SepalLengthCm", "SepalWidthCm", "PetalLengthCm", "PetalWidthCm"]].values
y = df["Species"].values
# Split into training and testing data
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.20, random_state=1
)