Slide 1

Slide 1 text

Χ οί Λ ͭ ͚ ͖ Ε ͳ ͍ ࢲ ͷ 
 ػ ց ֶ श M Y M A C H I N E L E A R N I N G T H AT I C A N ’ T S H O W O F F K A N A K I TA G A WA

Slide 2

Slide 2 text

AT F I R S T…

Slide 3

Slide 3 text

T H E D E TA I L O F T H I S LT C U T S B E C A U S E O F T I M E C O N S T R A I N T S I’ll talk 30% of that I want to talk.

Slide 4

Slide 4 text

I F Y O U WA N T T O 
 H E A R M O R E

Slide 5

Slide 5 text

P L E A S E C O M E T O J AW S - U G K O B E .

Slide 6

Slide 6 text

Welcome to the crazy group @JAWS-UG KOBE Facebook group

Slide 7

Slide 7 text

A G E N D A •Who am I? •LAST YEAR •What did I do for machine learning? •How to use AWS SageMaker •Let’s try

Slide 8

Slide 8 text

W H O A M I ?

Slide 9

Slide 9 text

K A N A K I TA G A WA • Nickname:Tiger
 #MakikomiTiger • Kansai University student
 3rd grade
 (major:media art) • Internship @ Serverworks • I want to be friend with AWS Lambda and Educate

Slide 10

Slide 10 text

L A S T Y E A R W H AT D I D I D O ?

Slide 11

Slide 11 text

.BS JAWS DAYS 2018

Slide 12

Slide 12 text

A F T E R T H E D AY, 
 M Y L I F E B E G A N T O C H A N G E .

Slide 13

Slide 13 text

@JAWS DAYS @re:Invent Taking Photos

Slide 14

Slide 14 text

I H A D 
 M A C H I N E L E A R N I N G T R A I N I N G C L A S S . Because of kind teacher

Slide 15

Slide 15 text

I WA N T T O S AY “ I C A N D O W I T H M A C H I N E L E A R N I N G . ” I think the words cool.

Slide 16

Slide 16 text

J U S T D O I T ! !

Slide 17

Slide 17 text

W H AT D I D I D O W I T H M A C H I N E L E A R N I N G ?

Slide 18

Slide 18 text

• Having machine learning training class • Supervised/Unsupervised learning • Doing assignment with the book “Machine Learning with Python (O’REILLY)” • Using iris dataset I think it difficult.

Slide 19

Slide 19 text

W H AT I S 
 I R I S D ATA S E T ? •Be distributed in UCI Machine Learning Repository •Iris petal length and width, and calyx length and width •The 3 type(setosa, virginica, versicolor)*50 samples

Slide 20

Slide 20 text

3 T Y P E S

Slide 21

Slide 21 text

O N E T I M E , I WAT C H E D T H E S I T E O F T H E D ATA S E T.

Slide 22

Slide 22 text

T H I S I S P E R H A P S T H E B E S T K N O W N D ATA B A S E T O B E F O U N D I N T H E PAT T E R N R E C O G N I T I O N L I T E R AT U R E . https://archive.ics.uci.edu/ml/datasets/iris

Slide 23

Slide 23 text

I R I S D ATA S E T ? I S N ’ T I T B A S I C ? I said I do with Iris dataset
 @SOME JAWS I think it difficult.

Slide 24

Slide 24 text

T H E B A S I S I S I M P O R TA N T. I can’t show off.

Slide 25

Slide 25 text

M A K E T H E C O U R S E C O N T E N T E A S I E R USE Amazon SageMaker

Slide 26

Slide 26 text

G E N E R A L F L O W O F M A C H I N E L E A R N I N G Make Sample data training of the model deploy the model

Slide 27

Slide 27 text

A M A Z O N S A G E M A K E R • Preprocessing sample data on Jupyter notebook • You can use the algorithm Amazon SageMaker offer. • You can push request to model for inference use boto or high revel Python library • Host model, separate

Slide 28

Slide 28 text

L E T ’ S T RY.

Slide 29

Slide 29 text

I H AV E N ’ T U S E D A M A Z O N S A G E M A K E R .

Slide 30

Slide 30 text

AT F I R S T, R E A D A N D T RY T U T O R I A L 
 ( U S E M N I S T D ATA S E T ) .

Slide 31

Slide 31 text

I T R I E D T O D O L I K E T H I S T U T O R I A L . B U T I C A N ’ T. Maybe, I can’t understand it well.

Slide 32

Slide 32 text

I S E A R C H F O R 
 “ I R I S D ATA S E T 
 A W S S A G E M A K E R ”

Slide 33

Slide 33 text

@AWS document https://docs.aws.amazon.com/ja_jp/sagemaker/latest/dg/tf- examples.html

Slide 34

Slide 34 text

T H E B A S I S I S I M P O R TA N T. I can’t show off.

Slide 35

Slide 35 text

J U S T D O I T ! ! with document

Slide 36

Slide 36 text

A F T E R M A K E N O T E B O O K I N S TA N C E Do Initializing variables

Slide 37

Slide 37 text

C O N T E N U E https://docs.aws.amazon.com/ja_jp/sagemaker/latest/ dg/tf-example1-train.html

Slide 38

Slide 38 text

M O D U L E N O T F O U N D E R R O R : N O M O D U L E N A M E D ' T E N S O R F L O W ' Error message

Slide 39

Slide 39 text

I D I D A C C O R D I N G T O T H E D O C U M E N T… ?

Slide 40

Slide 40 text

S A M E P R O B L E M S

Slide 41

Slide 41 text

T H E S O L U T I O N

Slide 42

Slide 42 text

W H E R E W I L L I W R I T E … ?

Slide 43

Slide 43 text

I F O U N D I T.

Slide 44

Slide 44 text

T E R M I N A L I S H E R E ! ! !

Slide 45

Slide 45 text

Y E S , Y E S ! 
 Y O U C A N D O I T ! ! !

Slide 46

Slide 46 text

T RY A G A I N https://docs.aws.amazon.com/ja_jp/sagemaker/latest/ dg/tf-example1-train.html

Slide 47

Slide 47 text

Error message AGAIN

Slide 48

Slide 48 text

No content

Slide 49

Slide 49 text

I T R I E D T O S E E O T H E R PA G E .

Slide 50

Slide 50 text

A C O L L E C T I O N O F A M A Z O N S A G E M A K E R S A M P L E N O T E B O O K S .

Slide 51

Slide 51 text

WAT C H N O T E B O O K

Slide 52

Slide 52 text

Look carefully

Slide 53

Slide 53 text

I M I S S E D N O T E B O O K .

Slide 54

Slide 54 text

C H A N G E A N D D O I T.

Slide 55

Slide 55 text

I T M O V E S ! ! ! ! !

Slide 56

Slide 56 text

M A K E T E N S O R F L O W C L A S S I N S TA N C E

Slide 57

Slide 57 text

G E T T H E I N F O R M AT I O N O F T H E T R A I N I N G J O B

Slide 58

Slide 58 text

D E P L O Y T H E M O D E L

Slide 59

Slide 59 text

AT L A S T…

Slide 60

Slide 60 text

I N O T I C E D .

Slide 61

Slide 61 text

I ’ M S O R RY…

Slide 62

Slide 62 text

I S H O U L D C H E C K C A R E F U L LY .

Slide 63

Slide 63 text

W E ’ R E WA I T I N G F O R C H A L L E N G E R .

Slide 64

Slide 64 text

I’m looking for job . Please talk with me. I want to provide a service
 that does not concern
 the country and sex of the person using it.

Slide 65

Slide 65 text

T H A N K Y O U F O R L I S T E N I N G ! ! ! @MakikomiTiger Kana Kitagawa