Slide 7
Slide 7 text
Mobility Technologies Co., Ltd.
7
JAGM)./$
■ Propagation-based approach [Hu+, ’17] [Voigtlaender+, ’19]^
■ *" 3I:]?C7
■ Optical flow metric learning \H(-/+QU@F1
→ Optical flow @FQU[B0?\HQU6N
2?O4XDP=;7@F
■ Detection/segmentation-based approach [Caelles+, ’17] [Luiten+, ’18]^
■ 8(-/+ detection/segmentation VLKT5R@F1
■ >WK&/#9 ,"@F
%"'&/#1(-/+ fine-tuning EYGM<ZS!"'=
Y.-T. Hu, J.-B. Huang, and A. G. Schwing. “Maskrnn: Instance level video object segmentation,” In NIPS,
2017.
P. Voigtlaender, Y. Chai, F. Schroff, H. Adam, B. Leibe, and L.-C. Chen. “Feelvos: Fast end-to-end
embedding learning for video object segmentation,” I CVPR, 2019.
S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixe ́, D. Cremers, and L. V. Gool. “One-shot video
object segmentation,” In CVPR, 2017.
J. Luiten, P. Voigtlaender, and B. Leibe. “Premvos: Proposal-generation, refinement and merging for video
object segmentation,” In ACCV, 2018.