Slide 1

Slide 1 text

Blood Brain Barrier and BDNF Delivered To the Brain Using PLGA Nanoparticles Renad Alyautdin1 , Igor Khalin2, Tin Wui Wong3 1Scientific Centre for Expert Evaluation of Medicinal Products, Moscow, Russia 2National Defense University of Malaysia, 3 University of Technology MARA, KL, Malaysia

Slide 2

Slide 2 text

Edwin Goldman Paul Ehrlich Сoncept of the blood-brain barrier

Slide 3

Slide 3 text

Сoncept of the blood-brain barrier

Slide 4

Slide 4 text

Lina Solomonovna Stern Сoncept of the blood-brain barrier

Slide 5

Slide 5 text

How to overcome the blood brain barrier? Magic bullet

Slide 6

Slide 6 text

6 Distribution of nanoparticles depending on the modification of their surface

Slide 7

Slide 7 text

7 C max мкг/мл Vd мл AUC мг/мл/мин Cl мл/мин t1/2 TNF 0,32 163 20,6 2,6 26 Au-TNF 3,0 18 248 0,21 182 Comparison of pharmacokinetic parameters of TNF and nanoTNF

Slide 8

Slide 8 text

Alyautdin R. N., Reichel A., Lobenberg R., et al. Interaction of poly(butyl)cyanoacrilate nanoparticles with blood-brain barrier in vivo and in vitro // J. Drug Target. - 2001. – Vol. 9. - Р. 209-221

Slide 9

Slide 9 text

Transport of drugs through blood brain barrier Apo E lumen endothelial cell brain Apo E drug LDL phagosome LDL receptor

Slide 10

Slide 10 text

Traumatic Brain Injury The TBI incidence is predicted to surpass many diseases as the main cause of death and disability by the year 2030

Slide 11

Slide 11 text

TBI Primary directly damages neurons, axons, dendrites, glia, blood vessels Acute neuro- degeneration Secondary ischemic damage, cerebral edema, neuroinflammation, neurotoxicity, oxidative stress, apoptosis, TAI Chronic neurodegeneration Traumatic Brain Injury

Slide 12

Slide 12 text

Brain-derived neurotrophic factor Khalin I et al. // Int J Nanomed. – 2015, 10:3245—3267. GNU Free Documentation License

Slide 13

Slide 13 text

BDNF vs TBI Anti-apoptosis Anti-inflammation Anti-neurotoxicity Neural regeneration Neuroplasticity Cognitive improvement Apoptosis Neuro-inflammation Neurotoxicity Neural degeneration Neuronal impairment Cognitive disturbances BDNF is an excellent candidate for developing new therapies for treatment of TBI?

Slide 14

Slide 14 text

Delivery to the brain BDNF PLGA Poloxamer 188 200 nm

Slide 15

Slide 15 text

Poloxamer 188 BBB ApoE

Slide 16

Slide 16 text

Objectives PLGA BDNF Poloxamer 188  To design NPs, capable to transport BDNF through BBB.  To evaluate efficacy of BDNF brain targeting.  To evaluate efficacy of the neuroprotective action of the compound using the model of TBI.

Slide 17

Slide 17 text

Experiment design 1. BDNF adsorption 2. BDNF delivery 3. BDNF effect

Slide 18

Slide 18 text

Experimental TBI Flierl, et al. Nature protocols 4.9 (2009): 1328-1337 O2 height weight magnet Target area

Slide 19

Slide 19 text

TBI evaluation No Task Score 1 Exit circle within 3 min 1 2 Seeking behavior 1 3 Startle reflex 1 4 Straight walk 1 5 Mono- or hemiparesis 1 6 Balance on 0.7-cm-wide beam during 10 seconds 1 7 3-cm-wide beam walk within 3 min 1 8 2-cm-wide beam walk within 3 min 1 9 1-cm-wide beam walk within 3 min 1 10 Balance on 0.5-cm-diameter round stick during 10 seconds 1 Neurological severity score (NSS)

Slide 20

Slide 20 text

TBI evaluation Passive avoidance (PA) • Quick procedure for studying short- and long-term memory • Ideal test for first screening • Sensitive for both rats and mice 0.3 mA, 2 s, cut-off: 180 s

Slide 21

Slide 21 text

Animals (male c57Bl/6) • 1st group – • 2nd group - + • 3rd group*– + • 4th group – + + • 5th group – + + • 6th group - + + + Experiment design PBS PBS BDNF 5μg PBS PLGA PBS BDNF 5μg PBS PLGA PBS PLGA BDNF 5μg BDNF 5μg controls Pol 188 Pol 188

Slide 22

Slide 22 text

Experiment design Penthobarbitone 60 mg/kg - 40 min 1 hour 3 hours 4 hours 24 hours 2 days 3 days 7 days TBI animals Sham operated 36 72 TBI 270 g, 2 cm IV injection 0.2 ml Experimental groups ELISA BDNF brain concentration NSS test Passive avoidance

Slide 23

Slide 23 text

Results 0 500 1000 1500 2000 2500 3000 Sham PBS PBS+BDNF PBS+PLGA+BDNF PBS+BDNF+Pol188 PBS+PLGA+BDNF+Pol188 BDNF pg/mg protein ** *** *** ### ### ### * vs PBS group # vs PBS+NP+BDNF+PX group PX PX

Slide 24

Slide 24 text

0 500 1000 1500 2000 2500 3000 Sham Ipsi Contra PBS PBS+BDNF PBS+NP+BDNF PBS+BDNF+PX PBS+NP+BDNF+PX * BDNF pg/mg protein ^ vs Sham group * vs PBS group # vs PBS+NP+BDNF+PX group ^^ ^^^ ^,*** ** *** *** *** ### ### ### ### ### ## ### ### ### TBI Results

Slide 25

Slide 25 text

0 1 2 3 4 5 6 7 8 9 1h 4h 1d 2d 3d 7d PBS PBS+BDNF PBS+BDNF+PX PBS+NP PBS+NP+BDNF PBS+NP+BDNF+PX Results NSS 7 days after TBI *** *vs PBS+NP+BDNF+PX group *** *** ** * NSS Time post- injury

Slide 26

Slide 26 text

0 20 40 60 80 100 120 140 160 180 200 Groups Sham PBS PBS+BDNF PBS+BDNF+PX PBS+NP PBS+NP+BDNF PBS+NP+BDNF+PX Results Passive Avoidance *** ** ## ### ## ## # * vs PBS # vs PBS+NP+BDNF+PX group Mean latent time, s

Slide 27

Slide 27 text

Conclusions:  We have designed PLGA NPs coated by Poloxamer 188, capable of transporting BDNF through the BBB and providing neuroprotective effect in mice with TBI.  Our study demonstrates the potential of using nanoparticulate delivery of BDNF into CNS in the treatment of TBI.  We employed clinically relevant modeling of TBI, optimal time point and clinically feasible method of drug administration

Slide 28

Slide 28 text

Благодарю за внимание