Slide 1

Slide 1 text

Algorithms & Complexity Frank Kair

Slide 2

Slide 2 text

Last time...

Slide 3

Slide 3 text

Project Euler

Slide 4

Slide 4 text

polyglot-euler

Slide 5

Slide 5 text

polyglot-euler

Slide 6

Slide 6 text

polyglot-euler

Slide 7

Slide 7 text

Fibonacci example

Slide 8

Slide 8 text

Analysis of Algorithms Asymptotics / Complexity Theory

Slide 9

Slide 9 text

No content

Slide 10

Slide 10 text

Applied Maths → Computer Science

Slide 11

Slide 11 text

Complexity Analysis We need a way to define the runtime of an algorithm regardless of the machine it’s currently running on.

Slide 12

Slide 12 text

Linear Search

Slide 13

Slide 13 text

Binary Search

Slide 14

Slide 14 text

Big O Big O is a mathematical notation that describes the limiting behaviour of a function when the argument tends towards a particular value or infinity.

Slide 15

Slide 15 text

The letter O is used because the growth rate of a function is also referred to as the order of the function. [...] an upper bound on the growth rate of the function. Big O

Slide 16

Slide 16 text

Big O

Slide 17

Slide 17 text

Big O Length Iteration worst case 1 1 10 10 100 100 1000 1000 10000 10000 … ...

Slide 18

Slide 18 text

Big O

Slide 19

Slide 19 text

No content

Slide 20

Slide 20 text

Big O

Slide 21

Slide 21 text

How do we profile these algorithms?

Slide 22

Slide 22 text

Just count the loops, then?

Slide 23

Slide 23 text

Merge Sort

Slide 24

Slide 24 text

Merge Sort

Slide 25

Slide 25 text

Merge Sort

Slide 26

Slide 26 text

Merge Sort O(n)

Slide 27

Slide 27 text

Merge Sort

Slide 28

Slide 28 text

Merge Sort O(n)

Slide 29

Slide 29 text

Merge Sort O(n) O(n)

Slide 30

Slide 30 text

Merge Sort O(n) O(n) ?

Slide 31

Slide 31 text

Merge Sort Recurrence relation T(n) = c if n == 1 = 2T(n/2) + n

Slide 32

Slide 32 text

Merge Sort Recurrence relation T(n) = c if n == 1 = 2T(n/2) + n T(n) = 2T(n/2) + n

Slide 33

Slide 33 text

Merge Sort Recurrence relation T(n) = c if n == 1 = 2T(n/2) + n T(n) = 2T(n/2) + n = 2 [ 2T(n/4) + n/2 ] + n

Slide 34

Slide 34 text

Merge Sort Recurrence relation T(n) = c if n == 1 = 2T(n/2) + n T(n) = 2T(n/2) + n = 2 [ 2T(n/4) + n/2 ] + n = 4T(n/4) + 2n = 4 [ 2T(n/8) n/4 ] + n = 8T(n/8) + 3n = 16T(n/16) + 4n = ... = (2^k)T(n/(2^k)) + kn

Slide 35

Slide 35 text

Recurrence relation T(n) = c if n == 1 = 2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn T(1) = c Merge Sort

Slide 36

Slide 36 text

Recurrence relation T(n) = c if n == 1 = 2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn T(1) = c n/(2^k) = 1 Merge Sort

Slide 37

Slide 37 text

Recurrence relation T(n) = c if n == 1 = 2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn T(1) = c n/(2^k) = 1 2^k = n Merge Sort

Slide 38

Slide 38 text

Recurrence relation T(n) = c if n == 1 = 2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn T(1) = c n/(2^k) = 1 2^k = n k = lg n Merge Sort

Slide 39

Slide 39 text

Recurrence relation T(n) = c if n == 1 = 2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn k = lg n T(n) = Merge Sort

Slide 40

Slide 40 text

Recurrence relation T(n) = c if n == 1 = 2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn k = lg n T(n) = (2^lg n)T(1) + n lg n Merge Sort

Slide 41

Slide 41 text

Merge Sort Recurrence relation T(n) = c if n == 1 = 2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn k = lg n T(n) = (2^lg n)T(1) + n lg n = cn + n lg n

Slide 42

Slide 42 text

Merge Sort Recurrence relation T(n) = c if n == 1 = 2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn k = lg n T(n) = (2^lg n)T(1) + n lg n = cn + n lg n O(n log n)

Slide 43

Slide 43 text

Does it matter?

Slide 44

Slide 44 text

Data Structures

Slide 45

Slide 45 text

Arrays vs Linked Lists

Slide 46

Slide 46 text

Binary Search Tree

Slide 47

Slide 47 text

B+ Trees

Slide 48

Slide 48 text

Back to Fibonacci… Why was it bad?

Slide 49

Slide 49 text

Fibonacci

Slide 50

Slide 50 text

Fibonacci

Slide 51

Slide 51 text

Fibonacci

Slide 52

Slide 52 text

Fibonacci

Slide 53

Slide 53 text

Fast Fibonacci

Slide 54

Slide 54 text

Paradigms / Techniques

Slide 55

Slide 55 text

Divide and Conquer Dynamic Programming Greedy Paradigms / Techniques

Slide 56

Slide 56 text

The Classics

Slide 57

Slide 57 text

Fast Fourier Transform Page Rank Dijkstra Miller-Rabin The Classics

Slide 58

Slide 58 text

Thank you!