Slide 1

Slide 1 text

Aron Walsh PhD Supervisor: Prof. Graeme Watson School of Chemistry, University of Dublin, Trinity College, Ireland The Origin of Structural Distortions in Post Transition Metal Ceramics

Slide 2

Slide 2 text

http://www.histories-humanities.tcd.ie/images/aerial.jpg

Slide 3

Slide 3 text

Computational Facilities IITAC Computer Cluster (712 Opterons) SGI Prism (16 x 10 ft rear projected) ICHEC (756 Opterons)

Slide 4

Slide 4 text

Watson group (TCD) • Thin film amorphisation and recrystalisation. • Oxide catalysis. • Adrenoceptors. • Supramolecular excited states.

Slide 5

Slide 5 text

Watson group (TCD) • Thin film amorphisation and recrystalisation. • Oxide catalysis. • Adrenoceptors. • Supramolecular excited states.

Slide 6

Slide 6 text

Watson group (TCD) • Thin film amorphisation and recrystalisation. • Oxide catalysis. • Adrenoceptors. • Supramolecular excited states.

Slide 7

Slide 7 text

Kr H N O Cl F Ar Ne Xe Rn He Cf No Am Lr Cm Fm Pu Pm Np Bk Md Es Ds Bh ub Mt uq Sg Rf Tc Hs uu Db Hg Br Se S P C Be Mg Ca Sr Ba Ra Li Na K Rb Cs Fr Sc Y Ti Zr Hf V Cr Mn Fe Co Ni Cu Zn Nb Mo Ru Rh Pd Ag Cd Ta W Re Os Ir Pt Au Ga In Tl Pb Bi Sn Al Ge As B Si Sb Te Po I At La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ac Th Pa U O Hg Tl Pb Bi Sn

Slide 8

Slide 8 text

Kr H N O Cl F Ar Ne Xe Rn He Cf No Am Lr Cm Fm Pu Pm Np Bk Md Es Ds Bh ub Mt uq Sg Rf Tc Hs uu Db Hg Br Se S P C Be Mg Ca Sr Ba Ra Li Na K Rb Cs Fr Sc Y Ti Zr Hf V Cr Mn Fe Co Ni Cu Zn Nb Mo Ru Rh Pd Ag Cd Ta W Re Os Ir Pt Au Ga In Tl Pb Bi Sn Al Ge As B Si Sb Te Po I At La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ac Th Pa U O Hg Tl Pb Bi Sn

Slide 9

Slide 9 text

Introduction ★ Unusual properties of metal ceramics Symmetric and asymmetric crystal structures. ★ What is a lone pair? “Pair of electrons residing in the outer shell of one atom and not shared by other atoms”. ★ Lone pairs in ceramics Considered as resulting from ns2 electronic configuration e.g. Bi(III), Pb(II), Sn(II), Tl(I). Stereochemical models: Bonding (Lewis, JACS 1916), VSEPR (Gillespe, Molecular Geometry 1972). Intra-atomic hybridization (L. E. Orgel, J. Chem. Soc. 1959).

Slide 10

Slide 10 text

Figure: Crystal structures of (a) litharge PbO, (b) rocksalt PbS, (c) herzenbergite SnS and (d) monoclinic Bi2 O3. (a) (b) (c) (d)

Slide 11

Slide 11 text

Applications ★ Pb(II), Sn(II) ceramics Gas sensors, light sensitive diodes, solar cells, batteries, anticorrosive paints, acid batteries. ★ Bi(III) ceramics Fast ion conductors, fuel cell electrolytes. ★ Hg(II), Tl(III) Components in high Tc superconductors. ★ Ternary compounds Catalysts, transparent conducting oxides.

Slide 12

Slide 12 text

Computational Methods ★ Density Functional Theory Gradient corrected PBE functional. ★ Plane Wave Basis Set PAW used to represent the core electrons. ★ Convergence Tests Plane wave cutoff and k-point sampling. ★ Structural Optimizations Cell vectors, angles and volume.

Slide 13

Slide 13 text

Experimental Methods High resolution synchrotron based spectroscopies. ★ X-ray Photoemission (1500eV) Target valence band, measure ejected electrons → Total EDOS. ★ Soft X-ray Emission Eject core electron, measure photon from valence relaxation. Strict selection rules → PEDOS. ★ Hard X-ray Photoemission (8000eV) Enhance the metal s contribution to the EDOS[1]. [1] D.J. Payne, R.G. Egdell, G. Paolicelli, F. Offi, G. Pannacione, P. Lacovig, G. Monaco, G. Vanko, A. Walsh, G.W. Watson, J. Guo, P.-A. Glans, T. Learmonth and K.E. Smith, Physical Review B (2007).

Slide 14

Slide 14 text

I. Pb(II) PbO Litharge PbS Rocksalt PbSe Rocksalt PbTe Rocksalt A.Walsh and G.W.Watson, Journal Of Solid State Chemistry 178, 1422 (2005). D.J.Payne, R.G.Egdell, A.Walsh, G.W.Watson, J.Guo, P.-A.Glans, T.Learmonth and K.E.Smith, Physical Review Letters 96, 157403 (2006).

Slide 15

Slide 15 text

Optimization PbO PbS Rocksalt Litharge Rocksalt Litharge Litharge (fixed a:c) E (eV) +0.37 - - +0.10 +0.51 a 5.27 4.06 6.01 5.13 5.08 b - 4.06 - 5.13 5.08 c - 5.39 - 4.21 7.08 Pb-O 2.64 2.35 (+1%) 3.01 (+1%) 2.86 2.82 Table 1 Calculated and experimental data for litharge and rocksalt PbO and PbS.

Slide 16

Slide 16 text

Figure: Electron density maps of rocksalt structured (a) PbO, (b) PbS and litharge structured (c) PbO and (d)PbS.

Slide 17

Slide 17 text

Figure: Electronic density of states of litharge PbO. -10.00 -5.00 0.00 5.00 Energy (eV) n(e) Pb(6s) O(2p). Pb(6pz ) Pb(6px+y )

Slide 18

Slide 18 text

Figure: Electronic density of states of litharge PbO. -10.00 -5.00 0.00 5.00 Energy (eV) n(e) Pb(6s) O(2p). Pb(6pz ) Pb(6px+y ) I II III

Slide 19

Slide 19 text

-10.00 -5.00 0.00 5.00 Energy (eV) n(e) Pb(6s) O(2p). Pb(6pz ) Pb(6px+y )

Slide 20

Slide 20 text

-10.00 -5.00 0.00 5.00 Energy (eV) n(e) Pb(6s) O(2p). Pb(6pz ) Pb(6px+y ) Bonding interaction Oxygen based Source of asymmetry

Slide 21

Slide 21 text

O O O O Pb

Slide 22

Slide 22 text

O O O O Pb O O O O Pb

Slide 23

Slide 23 text

O O O O Pb O O O O Pb O O O O Pb

Slide 24

Slide 24 text

Figure: Electronic density of states of litharge PbS. -10.00 -5.00 0.00 5.00 Energy (eV) n(e) Pb(6s) S(3p). Pb(6px+y ) Pb(6pz )

Slide 25

Slide 25 text

Figure: Electronic density of states of litharge PbS. -10.00 -5.00 0.00 5.00 Energy (eV) n(e) Pb(6s) S(3p). Pb(6px+y ) Pb(6pz ) I II III

Slide 26

Slide 26 text

-10.00 -5.00 0.00 5.00 Energy (eV) n(e) Pb(6s) S(3p). Pb(6px+y ) Pb(6pz )

Slide 27

Slide 27 text

-10.00 -5.00 0.00 5.00 Energy (eV) n(e) Pb(6s) S(3p). Pb(6px+y ) Pb(6pz ) Unchanged Reduced bonding Reduced Asymmetry

Slide 28

Slide 28 text

Lone Pair? ★ The directed asymmetric density in Pb(II) is a result of the interaction of anti-bonding Pb(6s) and anion p states with Pb(6pz). ★ The anion is directly involved in the states producing the asymmetric density. ★ However, interaction with anion p states of appropriate energy is needed. ★ The 3p states of sulphur are too high in energy!

Slide 29

Slide 29 text

Experimental Evidence ★ Comparison of the X-ray absorption and emission spectra confirm that the Pb 6s states are concentrated at the bottom of the valence band.

Slide 30

Slide 30 text

II. Sn(II) SnO Litharge SnS Herzenbergite SnSe Herzenbergite SnTe Rocksalt A.Walsh and G.W.Watson, Physical Review B 70, 235114 (2004). A.Walsh and G.W.Watson, Journal Of Physical Chemistry B 109, 18868 (2005).

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

Overlap between anion p and cation s Circle: DFT Calculations. Triangle: Experiment (XPS and XES).

Slide 33

Slide 33 text

III. Bi(III) Low T Monoclinic α High T Cubic δ A.Walsh, G.W.Watson, D.J.Payne, R.G.Edgell. J.Guo, P.-A.Glans, T.Learmonth, K.E.Smith, Physical Review B 73, 235104 (2006). D.J.Payne, R.G.Egdell, A.Walsh, G.W.Watson, J.Guo, P.-A.Glans, T.Learmonth and K.E.Smith, Physical Review Letters 96, 157403 (2006).

Slide 34

Slide 34 text

Vacancy configurations in the high temperature defective fluorite Phase ★ <100>: density functional theory. ★ <110>: forcefield, LMTO calculations. ★ <111>: electrostatics, diffraction studies. ★ Anion disorder: diffraction studies.

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

Electron Density Maps (a) <100> (b) <110> (c) <111>

Slide 37

Slide 37 text

Electronic Density of states (a) Alpha phase. (b) (100) delta phase. (c) (110) delta phase. (d) (111) delta phase. (red metal s, green metal p and blue anion p)

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

IV. Bi2Sn2O7 ★One of the most complex solved oxide structures. ★Bi(III) and Sn(IV) atoms. ★Increased catalytic activity over similar pyrochlore oxides. A.Walsh, G.W.Watson, D.J.Payne, G.Atkinson, R.G.Edgell, Journal of materials chemistry 16, 3452 (2006).

Slide 40

Slide 40 text

Electronic density of states Electronic distributions indicative of the binary SnO2 and Bi2O3 layers..

Slide 41

Slide 41 text

No content

Slide 42

Slide 42 text

No content

Slide 43

Slide 43 text

V. Group XII/XIII Oxides HgO and Tl2O3 ★Key components in the current highest temperature superconductors. ★Electronic structure of binary oxides had been neglected. ★Observed significant bonding of the shallow core d states with oxygen p states. P.-A.Glans, T.Learmonth, C.McGuiness, K.E.Smith, J.Guo, A.Walsh, G.W.Watson and R.G.Egdell, Chemical Physics Letters 399, 98 (2004). P.-A.Glans, T.Learmonth, C.McGuiness, K.E.Smith, J.Guo, A.Walsh, G.W.Watson and R.G.Egdell, Physical Review B 71, 235109 (2005).

Slide 44

Slide 44 text

No content

Slide 45

Slide 45 text

No content

Slide 46

Slide 46 text

No content

Slide 47

Slide 47 text

Conclusions ★ The anion plays a key role in determining the electronic structure and properties of heavy metal ceramics. ★ The lone pair associated with the ns2 electronic configuration is clearly more than a stereo- chemical feature. ★ These results have major implications for the chemical understanding and tuning the properties of current and future materials.

Slide 48

Slide 48 text

Acknowledgments TCD for a Trinity College Postgraduate Studentship. HEA for a PRTLI (Cycle III) grant. TCHPC for support of the IITAC cluster. Prof. Graeme Watson, Dr. Joanne Fearon, Dr. Gemma Kinsella, Berry Matijssen, Dr. James Hilton, Dr. Ben Morgan, Dr. Michael Nolan, David Scanlon, Kate Godinho and Dr. Oscar Rubio for their enlightening discussions and support.