Slide 14
Slide 14 text
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Choosing the right strategy for your GenAI task, with AWS
15
Embeddings-
based
search or RAG
(search + LLM)
Specific,
or up-to-date info
Task
requires
specific
info?
Simple
task?
Generic or
historical info
Zero-shot
Prompting
or similar
(FM)
Simple,
no need for examples
Specific
style?
More complex,
requires examples
CoT,
Fine-Tuning,
or similar
(FM + dataset)
Few-shot
Prompting
or similar
(LLM + examples)
Specific style,
skill, pattern,
or reasoning
Relatively straight
forward or
generic style
Amazon
Kendra
Amazon
SageMaker
Any vector DB
e.g.: OpenSearch, RDS,
Marketplace (Pinecone)
Open-source (FAISS, Chroma, etc.)
Amazon
SageMaker
Amazon
Bedrock
Amazon
Bedrock
Amazon
SageMaker
Amazon
Bedrock
Amazon
SageMaker
Amazon
Bedrock
*RAG = Retrieval Augmented Generation
*CoT = Chain of Thoughts
Real-
time
required?
ReAct
or similar
(LLM + Agent)
Amazon
SageMaker
Amazon
Bedrock
*ReAct = Reasoning & Acting
Relatively static
information
(e.g. docs, web scrapping)
Dynamic
information
(e.g. DBs, APIs, live internet)
Note, combinations are possible. E.g.: Fine-Tuning + RAG
See “RAG vs Finetuning” from Heiko Hotz (https://medium.com/p/94654b1eaba7)