Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
線形代数学 入門講座 ④置換 てくますゼミ
Slide 2
Slide 2 text
①行列の演算 ②連立一次方程式 ③正則行列 ④置換 ⑤行列式 ⑥数ベクトル空間 ⑦固有値 ⑧行列の対角化 てくます講座 線形代数学(全8回) の流れ 置換 様々な置換 置換の符号 あみだくじについて
Slide 3
Slide 3 text
てくます講座 学習方法 ・メモをとろう! 講座ではスライドに載せきれない大事なことも話します。 配布されたレジュメの余白に書いておきましょう。 ・問題を解こう! 学問を読み聞きだけで身に付けるのは難しいです。 問題を解くことで手を動かし、理解の確認をしましょう。 ・質問をしよう! せっかく参加した講座です。 気になることは、講座中でも質問していきましょう。
Slide 4
Slide 4 text
線形代数学 ④置換 行列式に向けて 今後、行列が正則であるかどうかがわかる行列式というものを定義します。 行列式はその行列の成分と置換の符号から定義されます。 行列式を計算するために、置換について学習しましょう。
Slide 5
Slide 5 text
線形代数学 ④置換 置換 𝑛個の文字{1, 2, ⋯ , 𝑛}から{1, 2, ⋯ , 𝑛}への一対一の対応を𝑛文字の置換といいます。 (例) 𝜎 1 = 3, 𝜎 2 = 2, 𝜎 3 = 4, 𝜎 4 = 1 は4文字の置換である。 1 1 2 2 3 3 4 4
Slide 6
Slide 6 text
線形代数学 ④置換 置換 置換𝜎は、1行目に1, 2, ⋯ , 𝑛を,2行目にσ 1 , 𝜎 2 , ⋯ , 𝜎(𝑛)を並べることで 行列のように表します。 また、上下の組み合わせが変わらない限り列を入れ換えて表すことがあり、 動かさない文字は省略して表すことがあります。 (例) 𝜎 1 = 3, 𝜎 2 = 2, 𝜎 3 = 4, 𝜎 4 = 1 で定まる置換𝜎に対して、
Slide 7
Slide 7 text
線形代数学 ④置換 置換の積 𝑛文字の置換𝜎, 𝜏に対して、𝜏でうつした後𝜎でうつす置換を𝜎と𝜏の積といい、 𝜎𝜏と表します。 (例) , のとき、 ,
Slide 8
Slide 8 text
線形代数学 ④置換 様々な置換 ・単位置換𝜀…文字を動かさない置換。(置換の積に関する単位元) (例) ・𝜎の逆置換𝜎−1…𝜎との積が単位置換になる置換。(置換の積に関する逆元) (例) に対して、
Slide 9
Slide 9 text
線形代数学 ④置換 様々な置換 ・巡回置換…文字𝑘1 , 𝑘2 , ⋯ , 𝑘𝑟 のみを𝑘1 → 𝑘2 , 𝑘2 → 𝑘3 , ⋯ , 𝑘𝑟 → 𝑘1 とうつす置換。 (例) これを とも表す。 ・互換…2文字のみを動かす巡回置換。 (例)
Slide 10
Slide 10 text
線形代数学 ④置換 巡回置換の積で表示 任意の置換は、使う文字が被らない巡回置換の積で表すことができます。 (例) について考えると、 まず、文字1がどううつっていくか調べる。 1 → 3 → 6 → 4 → 1となり、この4つの文字は巡回置換 1 3 6 4 で動く。 次に、この4文字以外の文字2がどううつっていくか調べる。 2 → 7 → 2となり、この2つの文字は巡回置換 2 7 で動く。 これを文字を使い切るまで行う。
Slide 11
Slide 11 text
線形代数学 ④置換 互換の積で表示 任意の巡回置換は、互換の積で表すことができます。 つまり、任意の置換は互換の積で表せます。 (例)
Slide 12
Slide 12 text
線形代数学 ④置換 置換の符号 置換𝜎が𝑚個の互換の積で表されるとき、sgn 𝜎 = (−1)𝑚 を𝜎の符号といいます。 置換の互換の積での表し方は1通りではありませんが、 sgn 𝜎 は決まります。 (例) について、 なので、 sgn 𝜎 = (−1)4= 1 符号が1である置換を偶置換,符号が-1である置換を奇置換といいます。
Slide 13
Slide 13 text
線形代数学 ④置換 あみだくじについて あみだくじを作るとき、置換の図で矢印の交点がある高さに横棒を描くと、 その置換に従って入れ換えをするあみだくじが得られます。 あみだくじの横線は、隣接互換(隣りの文字を入れ換える互換)に対応していて、 任意の置換が隣接互換の積で表せることの図形的な説明になっています。 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 (3 4)(2 3)(3 4)(1 2) 1 2 4 4 1 2
Slide 14
Slide 14 text
線形代数学 ④置換 まとめ ・いくつかの文字を入れ換える写像を置換という。 ・置換には、単位置換,逆置換,巡回置換,互換などがある。 ・置換は互換の積で表すことができ、必要な互換の数で符号を定義できる。 ・あみだくじは置換のことばで表すことができる。